2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение09.11.2016, 18:10 
Заслуженный участник


25/02/11
1796
Надо еще
Astroid в сообщении #1165100 писал(а):
Найти условие теплового равновесия

А то решения не будет.

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение10.11.2016, 13:33 


11/07/16
81
GAA
Большое спасибо за подробное объяснение!
Как раз методом Фурье я и пытаюсь её решить.
Я не знал, что можно разделять две пространственные переменные, буду иметь это ввиду.
Однако, возник еще один вопрос как раз по Вашему решению.
После проведения замены $$u(x,y) = X(x)Y(y)$$ и деления на $XY$ получим:
$$\frac{X''}{X} + \frac{Y''}{Y} = \frac{-Q}{XY}$$ (здесь взял $\beta = 1$ для удобства)
Это не очень похоже на уравнение с разделяющимися переменными, то есть выражение $\frac{-Q}{XY}$ рука не поднимается приравнять константе $\lambda$, ведь в знаменателе как раз наша функция $u(x,y)$.
Можете ли Вы вот этот момент прояснить, т.к. у вас этот шаг пропущен между первой и второй формулами?

UPD:
Перечитал Ваше более раннее сообщение, про подстановку $$u = u_0 + v$$ Не могли бы Вы сослать меня на источник, в котором подробно описан этот алгоритм сведения неоднородного уравнения к однородному?

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение10.11.2016, 18:29 
Заслуженный участник


12/07/07
4522
GAA в сообщении #1167490 писал(а):
Выбираем, допустим, $\lambda=(\pi k/a)^2$ и решения вида
$X_k(x)=\frac 1 {\sqrt a} \cos \frac {\pi k x} {a}$, $k > 0.$
Не дописал нулевое собственное значение и собственную функцию, соответствующую этому собственному значению.

Решение этой задачи во многом аналогично решению задачи для уравнения теплопроводности. В качестве $t$ выступает $y$. Посмотрите в книге Тихонова и Самарского. Если угодно, то разделяйте переменные в однородном уравнении.

И, да, удобней сразу, как в задаче и просят, найти соотношение между $Q$ и $q$. Но можно это сразу не сделать, решать и увидеть, что только при определённом соотношении между $Q$ и $q$ решение таким способом может быть найдено. Ну и потом подумать почему.

-- Чт 10.11.2016 17:36:46 --

Astroid в сообщении #1167799 писал(а):
Перечитал Ваше более раннее сообщение, про подстановку $$u = u_0 + v$$ Не могли бы Вы сослать меня на источник, в котором подробно описан этот алгоритм сведения неоднородного уравнения к однородному?
В случае первой краевой задачи всё просто, и можно посмотреть в любом учебнике. Однако в данном случае нужно искать частное решение ($u_0$), которое даст не только правую часть уравнения, но и удовлетворит неоднородному граничному условию, тогда для $v$ будем иметь уравнение Лапласа с однородными условиями второго рода.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: s4kkkk


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group