ArshakA, зачем Вам "универсальное множество", под которым Вы, по-моему, понимаете "множество всех множеств"? Чего полезного Вы от него ожидаете? Оно противоречиво, причём, кроме парадокса Рассела, есть и другие парадоксы. Например, парадокс Кантора.
Парадокс Кантора связан с понятием мощности множества. Непосредственно из определения неравенства

следует, что если

, то

. С другой стороны, легко доказывается (теорема Кантора), что для любого множества

выполняется неравенство

.
Теперь рассмотрим множество всех множеств, которое будем обозначать

. Так как множество

содержит в качестве элементов вообще все множества, то и его подмножества являются его элементами, поэтому

. Поэтому

. С другой стороны, по теореме Кантора выполняется противоположное неравенство

. Получается противоречие.
Ещё один парадокс связан с ординалами (порядковыми числами). Если существует множество всех множеств, то существует множество всех ординалов. С другой стороны, для всякого множества ординалов существует ординал, который строго больше их всех. И опять имеем противоречие.
Так для чего Вам нужно множество всех множеств?
P.S. Теории с универсальным множеством существуют, причём, универсальное множество в них понимается не как множество всех множеств, а как множество всех объектов, которые могут быть элементами множеств. Тогда все множества являются подмножествами универсального множества (не обязательно всевозможными).
С другой стороны, никто не запрещает в той же ZFC рассматривать такие объекты, как совокупность всех множеств. Для этого язык ZFC дополняется конструкцией

, где

— формула со свободной переменной

. Эта конструкция рассматривается как терм (имя некоторого объекта), и интерпретируется как совокупность всех множеств, обладающих свойством

, и называется классом. Это расширение языка оказывается консервативным: утверждение о множествах, не содержащее упоминаний классов, в расширенной теории доказуемо тогда и только тогда, когда оно доказуемо в исходной ZFC.
Наконец, есть теории (например, NBG), в которых основным понятием является класс, а множества определяются как классы, которые являются элементами каких-нибудь классов.
Таким образом, возможность рассматривать без противоречий очень большие совокупности множеств, такие, как класс всех множеств, существует и реализуется не одним способом.