Dauletfromast1996По п.1) : немного поспешили. Надо сначала проверить замкнутость образа, а уж потом считать размерности (да докажите его обратимость - и все дела)
По п.2: не будет, за счет незамкнутости образа. Но тут придется попотеть...
Рассмотрите для начала что-нить конкретное, например,

, на отрезке
![$[0,1]$ $[0,1]$](https://dxdy-03.korotkov.co.uk/f/a/c/f/acf5ce819219b95070be2dbeb8a671e982.png)
. Ясно, что в образ попадают лишь те

, которые в нуле равны нулю. Но: все ли такие - попадают? Например,

? Попробуйте теперь эту нехорошую - непопадающую - приблизить последовательностью попадающих...
Ну, а потом уже можно и общий случай посмотреть - в том же духе...