Вы утверждаете, что это новое пр-во еще не есть фоковское, потому что там нет вакуума. Так? Но там, в каждом из этих подпространств есть свои состояния с наименьшей энергией.
Состояние с одной частицей в основном состоянии --- это не вакуум. Вакуум --- это когда частиц нет вообще.
-- Сб июн 04, 2016 20:32:19 --И вновь, вопрос про векторWolfAlone в сообщении #1128459
писал(а):
Если смотреть той колокольни, что я описал выше, то что здесь делает 2-частичная функция, когда она уже есть в 4-частичной.
Не исключено (но не знаю наверняка), что вот именно это заблуждение Вас и запутывает. 2-частичная функция ни в коем случае не "сидит" в 4-частичной. Никогда и ни в коем случае!!!! Более того ЛЮБОЕ 2-частичное состояние ортогонально ЛЮБОМУ 4-частичному. Совершенно безотносительно к тому, какие именно это состояния.
У меня большое подозрение, что все это происходит из "каши", которую Вы устроили из полевой (осцилляторной) и "частичной" картины. Вот в осциллятрной картине основное состояние --- это когда все осцилляторы в основном состоянии. Но это не относится к "частичной" картине.
-- Сб июн 04, 2016 20:38:31 --Может это связано с вырождением вакуумов для всех более чем 1-частичных квантовых механик?
Нет. В n-частичной КМ (в любой, хоть с одной, хоть с двумя хоть сколько еще частицами) НИКАКОГО ВАКУУМА НЕТ ВООБЩЕ!!!! По той простой причине, что само понятие вакуума относится к к теории с произвольнм числом (включая ноль) частиц или к теории поля.
Здесь беда в том, что, рассматривая осциллятор в рамках простой одночастичной КМ и и предвосхищая теорию поля, иной раз вакуумом НЕКОРРЕКТНО называют основное состояние. Тут бы надо писать "вакуум" в кавычках, это не настоящий вакуум.
-- Сб июн 04, 2016 20:41:22 --То есть, если формально строить 4-частичную КМ, то не нужно отдельно строить 2-частичную. Она есть в предыдущей. Просто нужно свернуть все по 3-й и 4-й координате.
Это все абсолютно неверно. И я уже устал... Ну вот как это, берете совершенно с потолка какое-то страннное утверждение, что в 4-частичной КМ уже сидит 2-частичная... Ну нету такого, и никогда не было.
-- Сб июн 04, 2016 20:43:34 --Если бы нужно было иметь, скажем, КМ для 333 частиц, просто взяли бы 333 симметрическую степень 1-частичного
.
Совершенно верно. Но какое это имеет отношение к теории ЛЮБОГО числа частиц? Теория любого числа частиц это совсем не то же самое, что много отдельных теорий n частиц, разных для разных n.
-- Сб июн 04, 2016 20:44:50 --Если смотреть той колокольни,
А вот не надо смотреть с неправильной колокольни!!!
-- Сб июн 04, 2016 20:49:59 -- хотел бы пока обратить внимание, что я специально писал здесь физические координаты
, поскольку они в точности (??) настоящие физические координаты частиц, участвующих в игре. Абстрактные осцилляторные
пока не употребляю
Если Вы не употребляете полевые осцилляторы, то причем здесь гауссианы??? Частица может быть вовсе и не в квадратичном потенциале, в конце концов. И еще раз (и уж хватит об этом!!!) основное состояние частицы (и даже любого фиксированного числа частиц) не имеет НИКАКОГО отношения к вакууму! Это вот в теории поля вакуум --- основное состояние поля. Но поля, а не n частиц!!! При этом возбуждений поля (которые и есть частицы) нет вообще. Ни одной. Не смешивайте картину частиц и картину поля!!!! Они изоморфны, но нельзя из них гибрид устраивать!
-- Сб июн 04, 2016 20:54:33 --Я читаю к книжке Новиков-Тайманов "Современные структуры и поля" на стр 251. "Согласно представлениям физики XX в, частицам сопоставляются операторы". Далее идут стандартные формулы про коммутаторы бозонов и антикоммутаторы фермионов. Мне было не понятно как понимать "частице сопоставляется оператор".
Ну, если понимать дословно, то бред в этой книжке написан! Но можно понимать в том смысле, что состояние с одной частицей можно сделать из вакуума, подействовав ОДНИМ оператором рождения. Ну в таком разве смысле....
А вообще что еще за Новиков с Таймановым... Не знаю таких. И, суда по фразе, не хочу знать и не надо их знать. Впрочем, от отдельных придурочных фраз никто не застрахован, и у весьма приличных людей найти можно
Тут надо целиком все читать. Но я этого делать не буду, некогда мне.
-- Сб июн 04, 2016 20:57:52 --Обдумываю тщательно эту мысль... Ни к тем 1-частичным
, ни к конечной сумме симметрических произведений (
-частичных квантовых механик)? Как бы здесь поподробнее...
А чего тут можно подробнее??? И я не могу даже представить себе, что можно обдумывать по поводу СТОЛЬ ТРИВИАЛЬНОЙ фразы.
-- Сб июн 04, 2016 21:02:04 --Сам базисный вектор-вакуум - он один же? Если один, то понятно, что он входит в какое-то состояние с каким-то множителем. А что на счет вырождения вакуума. У нас же все-таки будет потом каждая частица 3-мерная. Или, если не один, то неединственность вакуума сидит уже в 1-мерном случае, который мы пока разбирали выше?
Вакуум один. И ни одно (!!!) n-частичное состояние вакуум не является. Более того, любое такое ссотояние (если в нем именно n частиц
) ортогонально вакууму.
Вообще-то бывает вырожденный вакуум. А то вдруг найдете такие слова и интерпретировать возметесь
Но это относится лишь к очень специальным теориям поля. Вам до этого ну очень далеко, не заморачивайтесь. Для "нормальных" полей вакуум единственен.
-- Сб июн 04, 2016 21:04:56 -- Состояние - это функция-ряд по операторам рождения
Нет у Дирака такого (во всяком случае я не помню), и даже если есть, то это просто неверно. Но вот если справа дописать еще вакуум, то станет правильно.
-- Сб июн 04, 2016 21:07:31 -- но что такое 0-частичная квантовая механика,
А зачем она нужна??? Ну если Вам так уж хочется, то можно устроить. Это вырожденная КМ, в которой только одно состояние, все операторы есть операторы умножения на нуль.
Только не надо говорить, что действие оператора рождения на вакуум нуля не дает. В любой квантовой механики фиксированного числа частиц нет никаких опрераторов рождения/уничтожения ЧАСТИЦ. Ну есть в теории осциллятора, но это совсем другие операторы. Их вообще не вполне правильно так называть. Ну да их так и не называют, нормальные люди их называют операторы рождения/уничтожения возбуждений. Рождение частицы и рождение возбуждения --- не одно и тоже (в неполевой тоерии).
-- Сб июн 04, 2016 21:14:41 --0-частичная квантовая механика тривиальна. Её вектор состояния 0-мерен, а гамильтониан тождественен.
Неверно. Вектор состояния 1-мерен, а гамильтониан нулевой. Впрочем, энергию можно и не от нуля отсчитывать. Но тогда будет все равно не единичен, а кратен единичному.
-- Сб июн 04, 2016 21:18:31 --В КМ конечного числа частиц вакуума нет
Естественно, в КМ фиксированного конечного числа частиц его нет А в теории любого числа частиц --- есть. Это РАЗНЫЕ теории. То, что n-частичная теория является неким, как говорят, "сектором" теории произвольного числа частиц не делает эти теори одинаковыми. Это, собственно, очевидно, сектор чего-то --- это никак не это что-то целиком.