2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 02:16 
Заслуженный участник


27/04/09
28128

(Неравенство треугольника)

Dmitriy40 в сообщении #1124261 писал(а):
Ну вот для размерности 2 есть оно самое, неравенство, сформулированное сразу в терминах расстояний (длин сторон).
Но оно и для 1, и для 0 годится. :-) Кажется, вы имели в виду строгое неравенство, а я — нестрогое. Тогда понятно, почему я не понял. Строгое для 1 и 0 даже для различных точек не всегда годится, действительно.

(Ещё кое-что…)

Dmitriy40 предложил упомянуть где-нибудь на форуме то, что я предложил в ЛС. Сомневаюсь, что идея новая, но замечательная точно.
arseniiv писал(а):
Вот вам обобщение метрического пространства, по мотивам вашего поста придумалось:

Множество $M$ вместе с функцией $s\colon M^3\to\mathbb R$ назовём площадическим пространством, если:
1. $s(x, y, z) = 0 \Leftrightarrow x = y\vee y = z\vee z = x$;
2. $s(\vec x) = s(\sigma\vec x)$ для любой перестановки $\sigma\in S_3$;
3. $s(x, y, z) \leqslant s(x, y, w) + s(x, w, z) + s(w, y, z)$ (неравенство тетраэдра).

Аналогично можно ввести объёмическое (4) пространство или, например, такой вырожденный случай:

Множество $M$ вместе с функцией $c\colon M\to\mathbb R$ назовём эээ пространством, если:
1. $c(x) = 0 \Leftrightarrow \mathrm{false}$;
2. тождественно истинная аксиома не считается;
3. $c(x) \leqslant c(w)$ (неравенство отрезка).

Эээ пространств с носителем $M$ получается ровно $M\times(0;+\infty)$, в каждом из них $c$ — положительная константа. Хотя на самом деле ненулевая, но должна быть положительная, просто в других случаях неотрицательность следует из остальных аксиом.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 13:48 
Заслуженный участник
Аватара пользователя


23/07/05
17989
Москва
Dmitriy40 в сообщении #1124229 писал(а):
$X_{min}=n-1$, не? Вроде бы всегда можно так расположить следующую точку (расстояния до текущих), чтобы фигура перестала "влезать" в пространство текущей размерности.
Не говоря уже о том, что для четырёх точек расстояния могут казаться таким, что ни в какое евклидово пространство они не влезут. Даже в бесконечномерное.

arseniiv в сообщении #1124243 писал(а):
а если не существует метрического пространства, в котором в нашем наборе точек были бы данные расстояния
Наверное, Вы имели в виду линейное нормированное пространство. Или линейное метрическое? На самом деле любое метрическое пространство можно изометрически вложить в банахово пространство ограниченных функций на достаточно большом множестве (с нормой равномерной сходимости). Откуда уже легко получить, что $n$ точек с произвольно заданными между ними расстояниями всегда можно вложить в $(n-1)$-мерное подпространство.

Alexander4702 в сообщении #1124237 писал(а):
Аффинное, думаю.
В аффинном пространстве нет расстояний. Впрочем, Вам об этом уже написали.

Dmitriy40 в сообщении #1124261 писал(а):
Впрочем, подумав, понял что такого условия быть и не может. В плоском 4-х угольнике можно потянуть одну из точек и выйти из плоскости не меняя никаких длин сторон. Вах.

Хотя, длина диагонали при этом будет меняться, а значит условие всё же можно придумать, но только если есть все пары расстояний, а не только длины сторон.
Есть какая-то формула, выражающая объём тетраэдра через длины его рёбер. Искомое условие, стало быть, состоит в том, что этот объём равен $0$. И, конечно, для больших размерностей этот метод тоже работает.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 16:02 
Заслуженный участник


20/08/14
11867
Россия, Москва
Someone в сообщении #1124341 писал(а):
Есть какая-то формула, выражающая объём тетраэдра через длины его рёбер. Искомое условие, стало быть, состоит в том, что этот объём равен $0$.
Интересно. Только я побоялся называть фигуру с разными расстояниями (и длинами сторон) тетраэдром.
Ну так получается проверкой объёма тетраэдра на $\ne 0$ по этой формуле можно определить необходимость третьей размерности. И видимо аналогично для бОльших размерностей (и для треугольников и отрезков). И тогда это ответ на исходный вопрос, не полный, но зато без перебора вершин.

Someone в сообщении #1124341 писал(а):
Не говоря уже о том, что для четырёх точек расстояния могут казаться таким, что ни в какое евклидово пространство они не влезут. Даже в бесконечномерное.
А не приведёте простенький пример такой штуки? Я смог придумать только если набор из 6-ти расстояний не является согласованным, но такие наборы думаю можно исключить по условию задачи.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 16:44 
Заслуженный участник


27/04/09
28128

(Насчёт ещё кое-чего)

Dmitriy40 и ещё один человек (не с форума) сказали мне, что площадическое пространство не взлетит, потому что площадь треугольника может быть нулевой ещё и если все вершины лежат на одной прямой. Чтобы это выразить, от пространства потребуется куда больше, чем от метрического, и выходит скучновато.

Someone в сообщении #1124341 писал(а):
Наверное, Вы имели в виду линейное нормированное пространство. Или линейное метрическое? На самом деле любое метрическое пространство можно изометрически вложить в банахово пространство ограниченных функций на достаточно большом множестве (с нормой равномерной сходимости). Откуда уже легко получить, что $n$ точек с произвольно заданными между ними расстояниями всегда можно вложить в $(n-1)$-мерное подпространство.
Я тогда решил, что число точек конечное, и в этом случае, кажется, всё едино? Фу, сам же ниже согласился. Да, забыл про нормируемость и тождество параллелограмма.

Dmitriy40 в сообщении #1124369 писал(а):
А не приведёте простенький пример такой штуки? Я смог придумать только если набор из 6-ти расстояний не является согласованным, но такие наборы думаю можно исключить по условию задачи.
По идее, надо чтобы нельзя было сделать пространство линейным нормированным — а если можно, то чтобы не выполнялось тождество параллелограмма. Что-то не соображу, как с учётом этого упростить подбор.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 18:24 
Заслуженный участник
Аватара пользователя


23/07/05
17989
Москва
Dmitriy40 в сообщении #1124369 писал(а):
А не приведёте простенький пример такой штуки?
Простой пример четырёх точек $A,B,C,D$ (я его уже неоднократно демонстрировал): $AB=AC=BC=BD=CD=1$, $AD=2$.
Dmitriy40 в сообщении #1124369 писал(а):
если набор из 6-ти расстояний не является согласованным
В каком смысле "согласованным"? Расстояния должны удовлетворять неравенству треугольника, больше от них ничего не требуется.

Dmitriy40 в сообщении #1124369 писал(а):
я побоялся называть фигуру с разными расстояниями (и длинами сторон) тетраэдром
"Тетраэдр" означает "четырёхгранник", и больше ничего. Если все рёбра имеют одинаковую длину, то тетраэдр называется правильным.
Dmitriy40 в сообщении #1124369 писал(а):
И видимо аналогично для бОльших размерностей (и для треугольников и отрезков). И тогда это ответ на исходный вопрос,
Определитель Кэли — Менгера.
Dmitriy40 в сообщении #1124369 писал(а):
не полный
В каком смысле?

Для приведённых выше четырёх точек определитель Кэли — Менгера равен $-8$. Можно предположить, что знак "минус" и означает, что эти точки не вкладываются в евклидово пространство. Но доказывать это я не пробовал.
Если взять расстояния $AB=AC=BD=CD=1$, $AD=a$, $BC=b$, то эту четвёрку точек можно вложить в (трёхмерное) евклидово пространство тогда и только тогда, когда $a^2+b^2\leqslant 4$; при этом определитель Кэли — Менгера равен $2a^2b^2(4-a^2-b^2)$.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 22:50 
Заслуженный участник


20/08/14
11867
Россия, Москва
Someone в сообщении #1124396 писал(а):
Простой пример четырёх точек $A,B,C,D$ (я его уже неоднократно демонстрировал): $AB=AC=BC=BD=CD=1$, $AD=2$.
Именно похожий пример и я придумал, и назвал его не согласованным, т.к. $AD$ должно быть в интервале $(0, \sqrt{3}]$, а $2$ уже вне допустимого диапазона.

Someone в сообщении #1124396 писал(а):
Dmitriy40 в сообщении #1124369 писал(а):
не полный
В каком смысле?
Не полный ответ в том смысле что по заданному набору расстояний не даёт сразу ответа о минимально необходимой размерности, лишь факт согласованности набора и можно ли понизить размерность на единицу. Т.е. для $n$ точек из всего множества возможных результатов $(\text{фигура невозможна}; 0; ...; n-1)$ для размерности в зависимости от знака выдаст лишь первый и два последних, а ни один из промежуточных выдать не может. Или нулевое значение не различает все значения размерности $(0; n-2)$? Я ведь правильно понял? Но при некоторых наборах расстояний хватит и отрезка прямой (пространства размерности 1 даже для тысяч вершин).
За наводку на определитель спасибо, именно про нечто похожее и спрашивал. Он даже больше информации выдаёт, чем надеялся. :-)

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение18.05.2016, 23:10 
Заслуженный участник


27/04/09
28128
Dmitriy40 в сообщении #1124424 писал(а):
Именно похожий пример и я придумал, и назвал его не согласованным, т.к. $AD$ должно быть в интервале $(0, \sqrt{3}]$, а $2$ уже вне допустимого диапазона.
А я поначалу подумал, что несогласованность — это было невыполнение неравенства треугольника. Тут оно требует лишь $AD\in[0;2]$, если остальные расстояния фиксированы.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение19.05.2016, 00:00 
Заслуженный участник
Аватара пользователя


23/07/05
17989
Москва
Dmitriy40 в сообщении #1124424 писал(а):
Именно похожий пример и я придумал, и назвал его не согласованным, т.к. $AD$ должно быть в интервале $(0, \sqrt{3}]$,
Кому оно "должно"? Определение метрики этого не требует. Более того, такие расстояния легко обнаружить буквально на кухне. Купите круглый арбуз, отметьте на нём две диаметрально противоположные точки (пусть это будут $A$ и $D$; назовём их полюсами), а точки $B$ и $C$ возьмём на экваторе, на расстоянии, равном четверти длины этого экватора. Расстояния, естественно, измеряем мерной лентой по поверхности арбуза. Вот Вам и четыре точки с "невозможными" расстояниями.

Dmitriy40 в сообщении #1124424 писал(а):
Не полный ответ в том смысле
Не ленитесь. Возьмите две точки на положительном расстоянии друг от друга. Поищите третью, которая даёт положительную площадь треугольника. Потом поищите четвёртую, которая даёт положительный объём тетраэдра. И так далее. Точку, которую один раз проверили и отвергли, повторно проверять не надо. И в конце концов требуемую размерность определите. Если не окажется вдруг, что заданные точки "не лезут" в евклидово пространство. Как указанные выше четыре точки на поверхности арбуза.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение19.05.2016, 00:49 
Заслуженный участник


20/08/14
11867
Россия, Москва
Someone в сообщении #1124432 писал(а):
Определение метрики этого не требует.
Похоже мы с Вами по разному понимаем термин "пространство", Вы ограничиваете любым метрическим, я же автоматически имел в виду более частный вариант - простое для понимания плоское евклидово. :-( Перечитав исходный вопрос понял что Вы более правы, автором задана лишь метрика.

Someone в сообщении #1124432 писал(а):
Не ленитесь.
Да не в лени дело, хотелось уйти от перебора точек. С тем или иным перебором решения-то есть.

В общем спасибо arseniiv и Someone, разъяснили попутно интересные вещи, думаю вопрос
Alexander4702 в сообщении #1124223 писал(а):
Пусть есть некоторый набор точек a_1, a_2, a_n на произвольном пространстве $M$, размерности $X$ . Пусть нам известны расстояния между каждой парой точек $d_1_2, d_1_3...d_1_n...$. Определить минимальную размерность пространства $M$, которая могла бы включать эти точки для произвольного значения n. То есть, найти функцию $X_m_i_n=X_m_i_n(n)$ при каждом сочетании значений $d$.
можно считать решенным? Заодно и с офтопом завязываю.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение19.05.2016, 06:27 


15/05/16
46
Dmitriy40 в сообщении #1124444 писал(а):
Someone в сообщении #1124432 писал(а):
Определение метрики этого не требует.
Похоже мы с Вами по разному понимаем термин "пространство", Вы ограничиваете любым метрическим, я же автоматически имел в виду более частный вариант - простое для понимания плоское евклидово. :-( Перечитав исходный вопрос понял что Вы более правы, автором задана лишь метрика.

Someone в сообщении #1124432 писал(а):
Не ленитесь.
Да не в лени дело, хотелось уйти от перебора точек. С тем или иным перебором решения-то есть.

В общем спасибо arseniiv и Someone, разъяснили попутно интересные вещи, думаю вопрос
Alexander4702 в сообщении #1124223 писал(а):
Пусть есть некоторый набор точек a_1, a_2, a_n на произвольном пространстве $M$, размерности $X$ . Пусть нам известны расстояния между каждой парой точек $d_1_2, d_1_3...d_1_n...$. Определить минимальную размерность пространства $M$, которая могла бы включать эти точки для произвольного значения n. То есть, найти функцию $X_m_i_n=X_m_i_n(n)$ при каждом сочетании значений $d$.
можно считать решенным? Заодно и с офтопом завязываю.

Думаю да, это ответ на исходный вопрос, по крайней мере, на его математический вариант в простой форме. И действительно спасибо отписавшимся.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение02.12.2016, 13:38 


09/09/15
79
Возвращаясь к изначальной теме топика. Вроде нет возражений, что левая частица в правую перейдет и наоборот? Вот теперь вопрос, а можно ли таким образом будущее с прошлым поменять? То есть, пройти по некоторой траектории так, что-бы вернувшись обнаружить что весь остальной мир живет "в прошлое". Тогда можно будет полетать со скоростью близкой к световой где-то неподалеку пока не настанет нужный момент в прошлом, потом тем же финтом повернуть опять свое время в ту же сторону в которую живет мир.

-- 02.12.2016, 12:44 --

Даже больше, если не подводят мои скромные познания в квантовой механике, можно считать что пространство-время находиться в суперпозиции разных топогий, а значит, каким-то процесом (сталкивая частицы ооочень больших энергий) можно приготовить себе суперпозицию бутылок клейна прямо по курсу :) Причет таких бутылок, что-бы "средняя" топология оставалась тривиальной. Интересует именно теоретическая возможность. Ясное дело что на практике сталкивая частицы не выйдет даже заметить гравитацию, не говоря уже о смене топологии.

 Профиль  
                  
 
 Re: Топология пространства-времени и частицы
Сообщение02.12.2016, 15:21 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Теория ничего не знает о том, существует такая теоретическая возможность, или не существует.

И вам это ясно сказали ещё на первой странице.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 57 ]  На страницу Пред.  1, 2, 3, 4

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group