2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Пустое множество - подмножество любого множества?
Сообщение14.04.2011, 18:45 
Kallikanzarid в сообщении #434796 писал(а):
OP, $a \subset b \Leftrightarrow \forall x (x \in a \Rightarrow x \in b)$. Выполняется ли это для произвольного $b$ и $a = \{\}$?
А это для кого писано?:

arseniiv в сообщении #271031 писал(а):
$$\varnothing \subseteq A \Leftrightarrow \forall x\left( {x \in \varnothing \Rightarrow x \in A} \right) \Leftrightarrow \forall x\left( {0 \Rightarrow x \in A} \right) \Leftrightarrow \forall x1 \Leftrightarrow 1$$

Притом ведь на той же странице! :-(

 
 
 
 Re: Пустое множество - подмножество любого множества?
Сообщение24.03.2016, 11:51 
arseniiv в сообщении #271031 писал(а):
$$\varnothing \subseteq A \Leftrightarrow \forall x\left( {x \in \varnothing \Rightarrow x \in A} \right) \Leftrightarrow \forall x\left( {0 \Rightarrow x \in A} \right) \Leftrightarrow \forall x1 \Leftrightarrow 1$$
Вот и всё, чего там гадать. :)


А такое рассуждение не пройдет? Или я ошибаюсь в чем-то?

$\varnothing \nsubseteq A \Leftrightarrow \exists x (x\in \varnothing \Rightarrow x\notin A) \Leftrightarrow \exists x (0\Rightarrow x\notin A) \Leftrightarrow  \exists x 1 \Leftrightarrow 1$

 
 
 
 Re: Пустое множество - подмножество любого множества?
Сообщение24.03.2016, 11:54 
Ошибаетесь: $\neg(A\Rightarrow B)$ не эквивалентно $A\Rightarrow\neg B$.

 
 
 
 Re: Пустое множество - подмножество любого множества?
Сообщение24.03.2016, 11:57 
Аватара пользователя
iSkiper, у Вас неправильно построено отрицание импликации. Отрицанием к $\forall x\left( {x \in \varnothing \Rightarrow x \in A} \right)$ будет $\exists x ( x\in \varnothing \operatorname{\&} x \notin A)$.

 
 
 
 Re: Пустое множество - подмножество любого множества?
Сообщение24.03.2016, 12:46 
Xaositect, Slav-27 да, действительно ошибся, спасибо.

 
 
 
 Re: Пустое множество - подмножество любого множества?
Сообщение01.12.2023, 10:58 
 i  Выделена и унесена в Карантин тема «Определение подмножества»

 
 
 [ Сообщений: 36 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group