Уважаемые коллеги, разрешите представить вашему вниманию необычный спор, состоявшийся на одном из сайтов, и попросить вас вынести свое суждение о правоте сторон. Дело в том, что спор перешел в конфликт с бесплодной руганью, и для меня важно получить заключение независимых квалифицированных наблюдателей.
На сайте
www.oper.ru, обычно далеком от математики, была помещена заметка "Новая арифметика" (
www.oper.ru/news/read.php?t=1051602870) со ссылкой на сатирический текст, высмеивающий исторические изыскания академика А.Т.Фоменко путем построения пародийной "новой арифметики".
Посетители написали несколько сотен комментариев к заметке, в которых и завязался данный спор. В одном из комментариев была дана ссылка на интервью Фоменко (
www.offline.computerra.ru/2008/719/347100/), в котором он говорил о реформе преподавания на мехмате МГУ и своих текущих научных интересах. В интервью им была сказана фраза: "Форма биомолекулы в пространстве задается при помощи ломаной с множеством узлов и ребер. Эту ломаную можно рассматривать как точку на поверхности очень высокой размерности". Эта фраза послужила толчком к обсуждению некоторых понятий геометрии.
Сущность спора состоит в следующем.
Пользователь с ником Supreme Being утверждает: говорить о размерности в отношении поверхностей некорректно. Размерность - это свойство пространства, а поверхность имеет разную размерность в зависимости от того, в каком пространстве ее рассматривать. Например, плоскость в трехмерном пространстве является поверхностью размерности три, потому что она является пространством прямых, которые определяются заданием трех параметров в уравнении прямой Ax + By + C = 0. В другом пространстве она, очевидно, будет иметь другую размерность. Понятие размерности к поверхности применимо только тогда, когда она сама является пространством. (Пространство, разумеется, следует понимать как абстрактное множество с некоторой аксиоматикой.) Вот цитата, в целом выражающая мнение г-на Supreme Being:
1) определение размерности вводится только для пространства, для поверхности - нет,
2) n-мерность в словосочетании "n-мерная поверхность" относится к тому пространству, которое представляет собой поверхность, а не к самой поверхности. Конец цитаты.
Пользователь с ником Gedeon, то есть я, утверждает, что корректное определение размерности поверхности давно существует в математике, и эта размерность не тождественна размерности пространства, в котором поверхность рассматривается. Т.е. существует как понятие размерности пространства, так и понятие размерности поверхности в этом пространстве. Например, плоскость является двумерной поверхностью в трехмерном пространстве, а кривая - одномерной поверхностью (на плоскости или в трехмерном пространстве). Отрицать наличие у поверхности размерности глупо, это признак математической неграмотности. Я привел аналитическое определение M-мерной поверхности в N-мерном пространстве путем введения N-M уравнений-ограничений. Речь шла о конечномерных линейных пространствах. Я указывал также, что существуют и бесконечномерные пространства, изучать которые значительно сложнее.
Пользователь Supreme Being считает, что я несу псевдонаучный бред и отказываюсь вникать в его объяснения.
Подробно ход дискуссии можно посмотреть по комментариям к указанной заметке: 382, 438, 492, 495, 501, 505, 510, 523, 542, 548, 550, 554, 583, 584, 585, 588, 589, 590, 592, 595, 598, 614, 622, 623, 624, 630, 636, 637 и далее до конца. Лента комментариев целиком разворачивается по этой ссылке:
www.oper.ru/news/print.php?t=1051602870. Осторожно, встречаются эмоциональные высказывания.
Прошу рассудить, какая из двух сторон права. Было бы хорошо, если бы суждение вынес научный работник или преподаватель. Хотя с другой стороны, по моему личному мнению, для разрешения этого спора достаточно грамотного успевающего студента математической специальности.
Персональная информация. Пользователь Supreme Being утверждает, что является кандидатом технических наук по специальности "томография", и ранее обучался в вузе по специальности "прикладная математика". Я, пользователь Gedeon, закончил механико-математический факультет Киевского университета в 1993 г., ученых степеней не имею.
P.S. Это не шутка, хотя так может показаться. Так уж получилось, что этот спор требует разрешения.