fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8, 9  След.
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 00:02 


11/02/16

80
Не засоряйте гамильтонианные объяснения мусором про то, что где-то можно, а где-то не можно действовать, якобы по физическим соображениям. Вы может функции складывать запретите по физич соображениям. Он может действовать всюду, а собственные функции мы прикладываем к физич задачам. Работаем только с антисимметричными пусть. Усаживаемся в антисимметричное подпространство и начинаем заниматься фермионами. Я внимательно читаю, что здесь пишут и ваши тексты про "где можно, не можно гамильтониану", вспоминая свои знания по этой части, я все с большей уверенностью отношу к чепухе. Только не пытайтесь нахрапом "вам уже все объяснили, ваши проблемы". Я говорил, что слышал про операторы и $L_2$. И давайте не будем объяснять мне, что он должен быть симметричным и т.п. Лучше делом займемся. То, что подразумевается, из первых сообщений темы видно. Сейчас мне пока не ясно, что взявши гамильтониан со спином, получаю электрон со спином. Спин задействован, а многочастичность еще не трогали. Где здесь коллизия между известной связью спина-статистики? Да и релятивизм-нерелятивизм не ясно, как здесь отслеживается-отбрасывается в силу известной связи его и спина.

amon, спасибо. Завтра спрошу, если вы не против.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 00:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407
amon в сообщении #1099371 писал(а):
Теперь можно посмотреть на спектр осциллятора $E=n+\frac{1}{2}$ с другой точки зрения.

А я спрашивал про это ещё на первой странице, но мне ответили, что речь не об этом, а примерно об уровне Ландафшица :-(

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 03:06 
Заслуженный участник


29/09/14
1279
Извините, долго печатал текст, давно упустил нить дискуссии, и потому вклиниваюсь, наверное, невпопад, и может быть вообще зря :facepalm: .

Насколько я смог понять первые посты топикстартера (если что не так, то прошу извинить, ведь я не "зубр", а простой ограниченный "Синус", мои мысли не взлетают высоко), поначалу ТС хотел полностью избежав изучения спина обнаружить автоматическое появление "детерминантов Слетера" и "бозон/фермионной статистики" в задачке о 2-мерном изотропном осцилляторе. Поводом ему послужило его наблюдение, что вырожденность спектра в этой задачке позволяет строить собственный функции, обладающие чётностью или нечётностью к перестановке аргументов $x,y.$

Ответ был дан: без понятия спин ни в какой задаче не появятся те настоящие бозоны/фермионы, о которых пишут учебники (причём, спин в реальной физике напрямую связан с рассмотрением вращений в 3-мерном пространстве, даже если речь идёт о частицах со спином равным нулю). Без спина можно лишь, подобно тому как дети в песочнице "пекут куличики" из песка подражая взрослым, испечь игрушечные "бозоны/фермионы" из чисто орбитальных 1-частичных волн. функций: можно по своему произволу своими руками налагать условие определённой симметрии к перестановкам на произвольно составленные N-кратные произведения 1-частичных в.ф. Математика не заставляет это делать, но и не запрещает так "потренироваться на кошечках", поиграть во взрослых дядей (которые делают "нечто похожее", но делают осмысленно - со спином, как это и рассказано в учебниках. Позже, может быть, приведу для ясности цитаты из книжек, поскольку ТС вроде и книжками недоволен).

А теперь вернусь к 1-частичной задачке (хотя и допускающей 2-частичную интерпретацию, но, как станет ясно, ценой потери физической содержательности преобразований симметрии в этой задаче) - к двумерному изотропному гармоническому очциллятору из первого поста ТС. И приведу элементарные примеры, показывающие, из каких соображений в той или иной ситуации мы отдаём предпочтение определённому выбору полного ортонормированного набора с.ф. из бесконеного множества разных возможных выборов при вырожденном спектре.

Топикстартеру это, может, уже не нужно, если его вопросы были лишь о происхождении бозонов и фермионов, но вдруг тему посмотрит какой-нибудь начинающий студент, и, как это иногда бывает, спросит: "блин, раз из-за вырождения есть бесконечно много спсобов выбрать набор базисных функций, то чё делать-то, какой набор с.ф. лучший?"

(Часть 1. Симметрия полная, нет возмущения)


(Часть 2. Возмущение понижает симметрию)


Таким образом, здесь я попытался конкретно пояснить, что та или иная симметрия орбитальных волновых функций в одночастичной (хотя и неодномерной) задаче легко разрушается незамысловатым возмущением. И, в частности, уже поэтому она не может служить основой для такой фундаментальной классификации частиц как "бозоны/фермионы".

Симметрия же или антисимметрия многочастичных состояний к перестановкам полных наборов квантовых чисел 1-частичных состояний, которая рассматривается в "методе вторичного квантования" в нерелятивистской КМ и в релятивистских КТП и которая ведёт к бозе- и ферми-статистикам, основана на тождественности частиц, устойчивой ко всяким возмущениям (о статистиках вообще должен вестись отдельный большой учебно-воспитательный разговор, а точнее - учащийся человек должен изучить последовательно всё, написанное по данной теме в книгах, не делая для себя скоропалительных выводов лишь из отдельных фраз).

Возмущающие поля меняют вид гамильтониана и форму орбитальной части 1-частичных в.ф., но не портят тождественность частиц одинакового сорта, ответственную за возможность классификации частиц на "бозоны/фермионы" (Вот в таком смысле и говорилось выше, что вид 1-частичного гамильтониана и форма координатно-зависящей части 1-частичных в.ф. несущественны при обсуждении "бозонов/фермионов"). Симметрия либо антисимметрия многочастичной в.ф. к перестановкам тождественных частиц, как показал разнообразнейший физический опыт, это всегда точная симметрия.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 11:02 


11/02/16

80
Спасибо. Перевариваю.......

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 13:21 


11/02/16

80
amon в сообщении #1099371 писал(а):
Давайте попробуем еще раз с самого начала. Что бы понять, имеем ли мы дело с бозоном или фермионом, частиц (одинаковых) должно быть больше одной
Можно ли сказать так? Пока частица одна можно говорить "она со спином" (или без), но нельзя называть ее в такой ситуации фермионом-бозоном. Когда начинаем их объединять в многочастичные состояния, то тогда и только тогда можно приписывать к слову "спиновая частица" слова бозон-фермион? При этом предыдущее словосочетание "спиновая частица" по прежнему употребительно. То есть, типа как бы спин - его наличие или отсутствие - имеется сам по себе безотносительно к каким-то там более сложным конструкциям типа многочастичные фермионные-бозонные состояния. (?)

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 14:15 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)



-- 15.02.2016 14:30:37 --

Cos(x-pi/2) в сообщении #1099495 писал(а):
"Синус" представляет себе ответ так: в любой реальной физической задаче симметрия скорее всего не идеальная, она нарушается, например, какими-нибудь внешними полями.

В теоретической физике это не всегда так: осцилляторный потенциал может возникать, скажем, как потенциал поля, а тут возмущение должно оказаться каким-то новым законом физики, действующим на всю Вселенную, и такой не всегда легко отыскать.

В общем, как всегда, большое спасибо за рассказ! Но могу ли я попросить рассмотреть ещё одно возмущение, точнее, парочку.
- $\hat{H}=\hat{H}_0+\alpha\delta(\mathbf{r}-\mathbf{r_1}),\quad\mathbf{r_1}=(x_1,0)$ (понятно, что здесь можно положить $y_1=0$);
- $\hat{H}=\hat{H}_0+\alpha\delta(\mathbf{r}-\mathbf{r_1})+\beta\delta(\mathbf{r}-\mathbf{r_2}),$ или $\hat{H}=\hat{H}_0+\alpha\delta(\mathbf{r}-\mathbf{r_1})+\beta(\partial/\partial\mathbf{n})\delta(\mathbf{r}-\mathbf{r_1}),$ смотря что удобнее.
Интуитивно, первое даст такие же с.ф. (или смешает 0 и 1 уровни), а вот второе - уже сделает что-то более неприятное.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 15:09 
Заслуженный участник


21/08/10
2580
Cos(x-pi/2) в сообщении #1099495 писал(а):
Ответ был дан: без понятия спин ни в какой задаче не появятся те настоящие бозоны/фермионы



За одним ислючением: скалярные (бесспиновые) бозоны. А вот фермионы без спина не получаются, кроме, разве что, игрушечных бесспиновых фермионов, описываемых асимметричными бесспиновыми функциями, которых в природе не существует.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 15:18 
Заслуженный участник
Аватара пользователя


04/09/14
5410
ФТИ им. Иоффе СПб
WolfAlone в сообщении #1099568 писал(а):
То есть, типа как бы спин - его наличие или отсутствие - имеется сам по себе безотносительно к каким-то там более сложным конструкциям типа многочастичные фермионные-бозонные состояния. (?)
Да, это так.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 15:44 


11/02/16

80
Получается тогда еще, что лучше говорить не "связь спина со статистикой", где обе "спин" и "статистика" фигурируют как бы равноправно, а "связь статистики со cпином".

-- 15.02.2016, 14:50 --

Пардон, все еще остаются вопросы
WolfAlone в сообщении #1099332 писал(а):
WolfAlone в сообщении #1098649
писал(а):
PS. Квантовая статистика Ферми - это статистика c функцией распределения $\varrho(x_1,...,x_N)$, которая приходит от одной "большой" $\Psi$-функции, зависящей от ВСЕХ (много-много) частиц в системе? То есть $\Psi(x_1,x_2, ...,x_N)\to\text{функция распределения } \varrho(x_1,...,x_N)=|\Psi(x_1,x_2, ...,x_N)|^2$? Аналогично, вопрос про бозонную статистику.

Начинаю рассматривать это "большое состояние", представляющее некоторую антисимметричную комбинацию 1-частичных фермионных . Эта "большая" $\Psi(1,2,...)$ и будет давать статистику Ферми-Дирака? Статистику в смысле функции распределения $\varrho$ постом выше? Фермионный газ, например, это он? Число частиц здесь может быть любым? И мало и много? Двух, трех уже достаточно?
$x_1,x_2,...$ здесь подразумевается все необходимые степени свободы.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 16:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Попытки переделать общепринятый язык, и говорить на каком-то своём "специально исправленном" языке, ни к чему хорошему не приведут.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 16:39 


11/02/16

80
Отвалите пожалуйста из дискуссии. Я тут без вас разберусь на каком языке мне понимать, спрашивать и переводить других. Идите исправляйте языки людей в других местах и проталкивайте вашу идею о том, что язык понимания и язык формулировок должен быть один и тот же. Не мешайте здесь, по крайней мере мне.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 20:00 
Заслуженный участник
Аватара пользователя


04/09/14
5410
ФТИ им. Иоффе СПб
WolfAlone, пожалуйста, не горячитесь. Вам все, как умеют, но искренне, пытаются помочь. Возвращаемся к волновым функциям. Мы, вроде, договорились, что в гамильтониане "фермионность-бозонность" запрятана в коммутационных соотношениях. Пусть теперь у нас два независимых осциллятора (как в Вашем примере, которых разобрал уважаемый Cos(x-pi/2)). Пусть мы нумеруем осцилляторы индексом $k$. Тогда за базис пространства волновых функций можно взять $(a^+_{k_1})^n (a^+_{k_2})^m|0\rangle$ с соответствующим нормирующим множителем, который мне лень писать. "Обычную" волновую функцию можно считать коэффициентом при соответствующей базисной волновой функцией, например: $\Psi=f(k_1,n;k_2,m)(a^+_{k_1})^n (a^+_{k_2})^m|0\rangle$, где $f$ - привычная волновая функция (также, как координаты вектора - это коэффициенты при базисных векторах). Мы можем написать другую $\Psi_1=f_1(k_2,m;k_1,n) (a^+_{k_2})^m (a^+_{k_1})^n|0\rangle$. Если наши частицы - бозоны, то $(a^+_{k_1})^n (a^+_{k_2})^m|0\rangle=(a^+_{k_2})^m (a^+_{k_1})^n|0\rangle$ и должно быть $f(k_1,n;k_2,m)=f_1(k_2,m;k_1,n)$. Стало быть, для согласованности картины мира бозонные волновые функции должны быть симметричными по перестановкам аргументов, относящихся к одинаковым частицам. Аналогично, в три секунды показывается, что фермионные волновые функции должны быть антисимметричны.

Теперь о спине. В высоких науках доказывается, что при очень общих предположениях операторы $a$ для частиц с целым спином коммутируют, а для полуцелого - антикоммутируют. Так возникает связь спина со статистикой. В этом доказательстве существенна 3+1-мерность пространства, поэтому в игрушечных (а может - и не очень) моделях в пространстве размерности 1+1 сплошь и рядом появляются "скалярные фермионы". Дальнейшее изучение этого вопроса показывает, что если бы в классической механике были бы фермионы, то уравнения Ньютона для них пришлось бы писать не в числах, а в более хитрых математических объектах. Но это уже совсем другая история (С).

Про статистику, опять, отдельная песня. Функция распределения ни как не связана с квадратом модуля волновой функции. Более того, я Вам по секрету скажу, что в большом количестве случаев квадрат модуля волновой функции никакого смысла не имеет. Для статистики важно, что две частицы в два состояния в классике можно посадить четырьмя способами, для бозонов - тремя, а для фермионов - одним. По большому счету, разница в статистиках сводится опять к разнице в коммутационных соотношениях операторов.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 20:10 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)


 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 20:16 
Заслуженный участник
Аватара пользователя


04/09/14
5410
ФТИ им. Иоффе СПб
Munin в сообщении #1099674 писал(а):
amon в сообщении #1099668 писал(а):
Мы, вроде, договорились, что в гамильтониане "фермионность-бозонность" запрятана в коммутационных соотношениях.

Которые частью гамильтониана не являются :-)
Ну, почему не являются. Есть у нас $H=a^+a+1/2$, и без коммутационных соотношений мы даже его спектра не узнаем никогда.

 Профиль  
                  
 
 Re: Фермионы и бозоны: подробности
Сообщение15.02.2016, 20:21 
Заслуженный участник


21/08/10
2580

(Оффтоп)


 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 126 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8, 9  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group