alexo2, немного не точно. Не учтено, что все шары могут попасть на одну полку. У ТС это учтено. Мелочь, но необходимая для решения учебной задачи.
atta_troll, равновероятными являются только записи попадания шаров на полки с учётом порядка выкладывания (или с учётом номеров шаров). Некоторые записи невозможно разделить разделителями. Например:

. Вы, я думаю, подразумеваете сортировку по номерам полок, то есть

. Но при сортировке и объединении одинаковых, записи становятся неравновозможными, поэтому формулу классической вероятности применять нельзя.
Например, случаю

соответствует только один исход, когда все шары попали на первую полку. А случаю

целых десять исходов, когда девять шаров попадают на первую, а один (любой!) на вторую полку. То есть этот случай в десять раз более вероятен. То есть отсортированные и объединённые (фактор-множество!) исходы, превращаются в неравновозможные случаи. Ну, конечно, при желании можно посчитать их веса, но это уже лишняя работа.