dsgeЯ поясню на примере мысль, высказанную
Евгением Машеровым :
1)
2)

Во втором случае мы обращались с бесконечностью как с реальным действительным числом (актуальным объектом), используя формулу Ньютона-Лейбница. Как вы видете, получился абсурд.
Нет, его мысль такая: "

? Этого "злая Вселенная" не допустит, поэтому это софизм."
Общепринятым решением парадокса Бернулли является введение функции полезности, ныне фундаментальная понятие в теоретической экономики и теории игр (тогда по
Евгению Машерову большинство современных специалистов в этих областях занимаются софистикой).
Проблема здесь не столько в капитале, капитал может экзогенно расти в процессе игры, капитал удобно иногда принять бесконечным у некоторых игроков - казино, правительство, мировое правительство, злая Вселенная; а в бесконечных мат.ожиданиях, с ними труднее иметь дело.
А насколько вообще математическое ожидание оправданно для описания вероятности выигрыша? Вот пусть вероятность выиграть 10 рублей у нас 0.999, а потерять 100000 0.001. Мат ожидание отрицательное, но интуитивно понятно, что если вы ввяжитесь в игру, то вы скорее всего выиграете, те это выигрышная игра для единичного случая.
Вся актуарная математика основана на этом, где, к счастью, вероятность несчастных случаев мала.