2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8  След.
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 14:26 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Panfilov в сообщении #1083193 писал(а):
а так:

$\sin(a-b)\sin(a+b)=\sin^2a-\sin^2b$

А это не "малоизвестный и красивый факт", а просто упражнение по тригонометрии для школяров. Вы перепутали темы.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 19:30 
Заслуженный участник


04/05/09
4586
Brukvalub в сообщении #1083232 писал(а):
Panfilov в сообщении #1083193 писал(а):
а так:

$\sin(a-b)\sin(a+b)=\sin^2a-\sin^2b$

А это не "малоизвестный и красивый факт", а просто упражнение по тригонометрии для школяров. Вы перепутали темы.
По-моему, вы несправедливы. Мне этот факт не был известен, по крайней мере, я не помню, чтобы встречал такое.
Тем не менее, то, что оно легко выводится, не отменяет того, что само тождество - неожиданное, особенно если его записать так:
$\sin(a-b)\sin(a+b) = (\sin a-\sin b)(\sin a+\sin b)$

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 19:49 
Заслуженный участник


27/04/09
28128
Это выполняется и для гиперболического синуса. В итоге решениями $f(x+y)f(x-y) = f^2(x) - f^2(y)$ как минимум являются $\mathrm{id},\sin,\sh$ и решения, умноженные на константу с аргументом, умноженным на константу. Общий вид чего-то не находится. Кстати, может, тему про это уравнение создать? Есть аналогичное «чётное».

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 19:52 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
venco в сообщении #1083324 писал(а):
Тем не менее, то, что оно легко выводится, не отменяет того, что само тождество - неожиданное

Тогда давайте не мелочиться и выпишем сюда все упражнения на тождественные преобразования по тригонометрии из, скажем, Сканави, мне они все кажутся сказочными и удивительными. :D

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 21:03 
Заслуженный участник


04/05/09
4586
Зачем все? Я только про это сказал. Если вы не поняли, чем оно примечательно, то это как раз тем, что синус тоже оказался решением вышеприведённого функционального уравнения, в дополнение к очевидному $f(x)=x$.
Мне этот факт показался интересным.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 21:13 
Модератор
Аватара пользователя


11/01/06
5698
g______d в сообщении #840771 писал(а):
$$
\int\limits_0^1 x^{-x}\,dx=\sum\limits_{n=1}^{+\infty}n^{-n}
$$

Недавно только узнал, что это тождество называется "мечтой второкурсника" :lol:

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 21:32 
Заслуженный участник


04/05/09
4586
arseniiv в сообщении #1083330 писал(а):
Это выполняется и для гиперболического синуса. В итоге решениями $f(x+y)f(x-y) = f^2(x) - f^2(y)$ как минимум являются $\mathrm{id},\sin,\sh$ и решения, умноженные на константу с аргументом, умноженным на константу. Общий вид чего-то не находится. Кстати, может, тему про это уравнение создать? Есть аналогичное «чётное».
Общий вид: $f(x) = c\sum{a^k x^{2k+1}\over{(2k+1)!}}$
При разных параметрах $a$ и $c$ получаются как раз $\mathrm{id},\sin,\sh$.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 21:44 
Модератор
Аватара пользователя


11/01/06
5698
venco в сообщении #1083355 писал(а):
Общий вид: $f(x) = c\sum{a^k x^{2k+1}\over{(2k+1)!}}$

Это сворачивается до $\frac{c}{\sqrt{a}} \sinh(\sqrt{a}\cdot x)$.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 21:45 
Заслуженный участник


27/04/09
28128
venco
О. Кажется, я к чему-то подобному почти подошёл. Хотя, наверно, не с той стороны, потому что не очень прозрачно пока. Поместил ваш ответ в тему (всё-таки создал её) в спойлере.

-- Пт дек 18, 2015 23:48:09 --

Выглядит как мультисекция (здесь би-) ряда, но почему она появляется…

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 21:48 
Заслуженный участник


04/05/09
4586
maxal в сообщении #1083359 писал(а):
venco в сообщении #1083355 писал(а):
Общий вид: $f(x) = c\sum{a^k x^{2k+1}\over{(2k+1)!}}$

Это сворачивается до $\frac{c}{\sqrt{a}} \sinh(\sqrt{a}\cdot x)$.
Не совсем. $\mathrm{id}$ должно получиться при $a=0$, а в вашей формуле с этим проблемы.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение18.12.2015, 22:01 
Заслуженный участник


27/04/09
28128
Надо просто ввести shc по аналогии с sinc как доопределённый по непрерывности $\sh z/z$, получится и компактнее: $cx\operatorname{shc}(x\sqrt{a})$.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение19.12.2015, 07:55 
Заслуженный участник


04/05/09
4586
arseniiv в сообщении #1083362 писал(а):
Надо просто ввести shc по аналогии с sinc как доопределённый по непрерывности $\sh z/z$, получится и компактнее: $cx\operatorname{shc}(x\sqrt{a})$.
Таким образом синус мнимым получится. А если перейти к комплексным параметрам (а что нам мешает?) то и корень не нужен. И вместо shc можно использовать с тем же успехом стандартный sinc:
$$cx\operatorname{sinc}(ax)$$
Я думаю, на этом можно закончить. :-)

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение19.12.2015, 10:45 
Заслуженный участник


27/04/09
28128
Ага. (Только я так и не понял, как вывести ряд из первых принципов, прямо из уравнения. :?)

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение19.12.2015, 17:24 
Заслуженный участник


04/05/09
4586
Если честно, я его почти угадал. Взял первые несколько членов Тейлора и нашёл между ними соотношение. Синус получился однозначно.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение20.12.2015, 10:14 


13/10/14
25
Челябинск
$\cos(a-b)\cos(a+b)+1=\cos^2a+\cos^2b$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 117 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group