Я не понимаю смысла этого доказательства. Если Вы хотите сказать, что по определению не существует никаких точек, кроме как принадлежащих геодезическим, соединяющим эти две точки, то так и скажите.
Не могу поверить что на самом деле не понимаете; ничего такого "по определению" не требуется (это - следствие).
Ладно напишу еще раз, со учетом всех корекций.
С одной стороны мы имеем исходную точку принадлежащую поверхности - я назвал ее

.
Далее, многообразие в окрестности

гладко - так что начиная ИЗ

, можно проводить геодезические и продолжать их (по меньшей мере, пока они пересекли друг друга).
Мы НЕ требуем чтобы многообразие В самой точки

было гладким, и также НЕ требуем чтобы ЧЕРЕЗ

однозначно проходили бы геодезические (хотя через P могут проходить всякие линии многообразия). Точно также, как в вершине конуса или куба - ИЗ вершины можно проводить геодезическиe к остальных точек, хотя ЧЕРЕЗ вершину геодезических однозначно продолжать нельзя.
Итак, многообразие в точки P может быть как гладкое, так и с дефицитом угла наподобие вершины конуса - это нам не важно.
Все что мы хочем насчет геодезических - это возможность однозначно проводить геодезические ИЗ ("исходя из")

в любых направлений к других точек, и/или проводить геодезических начиная ИЗ других точек ДО ("заканчивая в") точки

(а не проводить геодезических ЧЕРЕЗ

).
Пока все понятно?
Далее, дана еще идеальная "круговая" симметрия гауссовой кривизны по отношению "удаления по геодезической" из центра

- гауссова кривизна по геодезических ИЗ

в любом направлении, меняется как одну и ту же функцию

из длины геодезической

.
Функция

: ограничена снизу положительной константой, внутренне непрерывна везде кроме возможно (но не необходимо) в своих конечных точек интервала аргумента: в

, и в точку где геодезическая "заканчивается" (последняя если кривизна в ней точечно-прерывна - может либо совпадать с исходной точки

, либо оказаться другой "вершинной точки" многообразия, через которой геодезическую нельзя однозначно далее продолжить).
Последнее, что дано - это "геодезическая полнота" - в смысле, что к любой точкe многообразия

, можно провести геодезической ИЗ

и заканчивающейся в этой точке

.
Следствия:
- Все геодезические ИЗ P пересекаются одновременно (на одной и той же длины L), в одной и той же общей точке

.

может быть как "вершинной" (с дефицитом угла, в ней

прерывна), либо нет. Это нам не важно -
пытаться продолжать геодезических ЧЕРЕЗ

мы не будем (хотя можем проводить через ней любых линий, в частности линий состоящих из двух геодезических с общей точке в

).
- Любая точка многообразия, лежит на какой-либо геодезической соединяющей

и

. На многообразии НЕТ точек, которые НЕ принадлежат какой-либо геодезической соединяющей

и

. Как следствие, многообразие замкнуто (компакт) - итого, одни исходные ограничения на кривизну (метрику) - определили с необходимости это топологическое свойство.
- Все геодезические выходящие ИЗ

, точно также радиально симметричны, и пересекаются в одной и той же точке, после того же самого расстояния L - и эта точка не может быть никакой другой, кроме исходной точки

(идентична точки

).
Таким образом,
любой путь вида

где обе

,

геодезические, каждая из них длиной

- начинается и заканчивается в одной и той же исходной точки

- т.е.

и

совпадают идентично.
Тоесть если вы начиная из

в
любом направлении, двигаетесь по геодезический путь L до точки схода

, в точки схода

меняете направление
любым образом и продолжаете опять по геодезический путь L - то опишете петлю возвращаясь обратно к исходной точки (возможно, вы даже дважды вернулись к исходной точки).
(Для вас добавляю, что выбор направления ИЗ

(или

) - должен однозначно определять геодезической - топологические "разветвления" не разрешены, ибо говорим про многообразии)
Наконец, примерное частное двухмерное многообразие "общего" типа вложенное в 3d, на котором вы можете примерить рассуждения выше.
Берем эллипс. Через точки конца большого диаметра, отрезаем "дугу" (меньше "половины" эллипса) - поверхность вращения этой дуги вокруг отрезка соединяющего ее концов - и есть пример такого многообразия.
Два "полюса" этой "цепелино-образной" поверхности "дуги вращения" - будут вершинные точки типа "вершины конуса" - кривизна на поверхности в них существенно положительна, и точечно-прерывна в "вершин" (меньше половины эллипса нужно брать именно из-за того чтобы в этих точек кривизна была все-таки положительной - иначе в одной из вершин получится не дефицит, а профицит угла).
Это будет означать то же самое, что условие, запрещающее продолжать геодезические дальше точки их схождения.
Нигде не требуется
продолжать геодезических ЧЕРЕЗ "точек схождения" (

или

).
При этом, ЧЕРЕЗ точек схождения можно проводить любых линий (поверхность непрерывна, эти точки принадлежат многообразию - даже если "вершины") - в частности линий состоящих из двух геодезических кусков, ДО и ОТ вопросной точке.
Еще раз - выбор направления ИЗ любой точки (включительно "вершинной" - с точечным дефицитом угла) - должен однозначно определять геодезической в этом направлении - разветвления не разрешаются ибо мы говорим про многообразии.
"Выбор направления" - в частности (метрически) означает, что направление в двухмерии параметризуется однозначно единственным реальным параметром (циклическим), пробегающий "угол" (по отношению к некоему "нулевому" направлению в данной точке).
В "полном конусе", который вам так нравится - в вершине имеется разветвление - направление НЕ определяет геодизической однозначно - нужен еще и булевой параметр, определяющий по "верхнему" или "нижнему" полуконусу ("листу") будет проводиться геодезическая из вершины, в так выбранном направлении.
Вот представьте, что Вы захотели свернуть плоский лист в трубочку, изменив таким образом его топологию. Что Вам для этого нужно? Нужно -- точно попасть одним краем листа в другой, что не так уж тривиально. Если чуть-чуть не попадёте -- то уже не получится у Вас свернуть лист в трубочку.
Во уж никакая "точность", ничего "свертывать" и никуда "попадать" мне не нужно, чтобы топологически изометрично замыкать именно плоского листа.
Все что "нужно" - это взаимно-идентифицировать точек из границ листа - в зависимости от идентификации могу получить цилиндр, лист мебиуса, плоский тор, плоская бутылка клейна или плоская проективная плоскость (все эти многообразия будут иметь нулевой гауссовой кривизны везде).
Все ваши беды имхо - из слишком жесткой мысленной привязки к вложению в 3d пространстве (я обратно - дал маху насчет геодезических через вершинных точек, именно потому что пытаюсь не думать в рамке конкретных вложений).
Интересно какая "точность" вам нужна, и как нужно "свертывать", чтобы получить плоский тор или плоскую бутылку клейна - вполне обычные везде плоские двухмерные многообразия, которые однако не вкладываются в трехмерное пространство....
. А если слегка нарушить круговую симметрию, то станет ещё интереснее: тогда у Вас даже точки схождения геодезических как таковой не получится.
Разумеется идеальная круговая симметрия - одно из обязательных условий.
Да, капля топологически эквивалентна сфере. Но это только потому, что точка вершины была искусственно включена в это многообразие, пренебрегая исходными требованиями к гладкости. А если Вы ставите задачу таким образом, что условия на гладкость изначально не ставятся, тогда вообще непонятно по каким правилам Вы собираетесь конструировать эту поверхность.
Как именно и по каким правилам конструируется, описано выше. Условия на гладкость (непрерывность кривизны) - не ставятся только в двух точек - исходной точки центральной симметрии (

), и на общую точку "схода"

(в ней уж "как получится").
При этом, я легко все-таки
мог бы потребовать условия гладкости (непрерывность гауссовой кривизны) везде - в виде конкретных ограничений на видe функции

, кроме существенной положительности - например, в аналитичном виде через коеффициентов метрики (первой фундаментальной формы). Для исходной точки

можно воспользоваться известном равенством

; для конечной точки "схода" будет некоторое интегральное выражение.
Но я просто не нахожу это необходимым.
В связи с интересующего меня топологическим свойством замкнутости, как следствие из центральной симметрии положительной кривизны - все равно получу ли в итоге ротационную поверхность полуокружности вокруг диаметра (т.е. сферу), или ротационную поверхность сегмента окружности вокруг хорды сегмента.
Хотя во втором случае получится радиально-переменная положительная гауссова кривизна, и "вершины" в антиподальных точек (точечные прерывности кривизны - в которых дефицит угла, и через которых не хорошо определено, как проводить геодезических) - для обоих поверхностей, следует одно и то же топологическое свойство замкнутости - и оно следует из условий на кривизны одним и тем же образом.