Собрала наборы из 8 пар простых чисел-близнецов, следующих подряд без лишних простых чисел между ними и без пересечений (аналогично семёркам пар близнецов в последовательности OEIS
A035795)
Давно известная первая восьмёрочка:
Код:
1107819732821: 0, 2, 90, 92, 96, 98, 126, 128, 138, 140, 156, 158, 216, 218, 240, 242
Решение
Begemot82:
Код:
9667145661911: 0, 2, 36, 38, 48, 50, 90, 92, 108, 110, 126, 128, 150, 152, 216, 218
Пока неизвестно, существуют ли между этими решениями другие решения.
И последовательности таких наборов в OEIS вроде пока нет, насколько мне известно.
А дальше уже следуют симметричные кортежи, то есть КПППЧ; это из пандиагональных квадратов 4-го порядка, представленных
Jarek на конкурс (первые числа кортежей пока не показываю, но идут они в порядке возрастания, причём
):
Код:
P1: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P2: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P3: 0, 2, 30, 32, 60, 62, 90, 92, 96, 98, 126, 128, 156, 158, 186, 188
P4: 0, 2, 12, 14, 42, 44, 54, 56, 120, 122, 132, 134, 162, 164, 174, 176
P5: 0, 2, 30, 32, 42, 44, 48, 50, 72, 74, 78, 80, 90, 92, 120, 122
P6: 0, 2, 30, 32, 60, 62, 90, 92, 138, 140, 168, 170, 198, 200, 228, 230
P7: 0, 2, 12, 14, 42, 44, 54, 56, 90, 92, 102, 104, 132, 134, 144, 146
P8: 0, 2, 30, 32, 42, 44, 72, 74, 132, 134, 162, 164, 174, 176, 204, 206
P9: 0, 2, 30, 32, 42, 44, 72, 74, 78, 80, 108, 110, 120, 122, 150, 152
P10: 0, 2, 60, 62, 102, 104, 162, 164, 168, 170, 228, 230, 270, 272, 330, 332
P11: 0, 2, 48, 50, 120, 122, 132, 134, 168, 170, 180, 182, 252, 254, 300, 302
Весьма интересные восьмёрочки.
Значит, имеем два вида таких восьмёрочек: симметричные и не симметричные.
Пока неизвестно, является ли cимметричная восьмёрочка с
минимальной по значению
.