2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 91  След.
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение14.10.2015, 01:32 
340 семёрочек!

(Семёрки №211-340)

n=14, 30190154734169: 0 2 78 80 108 110 150 152 180 182 210 212 300 302
n=14, 31016508343901: 0 2 78 80 120 122 168 170 210 212 300 302 306 308
n=14, 31539672230279: 0 2 12 14 42 44 78 80 108 110 120 122 180 182
n=14, 31588717087157: 0 2 24 26 72 74 102 104 312 314 324 326 354 356
n=14, 31880817429281: 0 2 18 20 30 32 168 170 186 188 216 218 330 332
n=14, 32054428667951: 0 2 30 32 48 50 60 62 126 128 138 140 186 188
n=14, 32191184539439: 0 2 72 74 90 92 102 104 120 122 162 164 168 170
n=14, 32294571711221: 0 2 30 32 78 80 108 110 150 152 180 182 210 212
n=14, 32640764154881: 0 2 108 110 126 128 150 152 180 182 198 200 240 242
n=14, 33096520958069: 0 2 30 32 90 92 240 242 258 260 282 284 312 314
n=14, 33168826148501: 0 2 30 32 66 68 108 110 156 158 168 170 180 182
n=14, 33330835509857: 0 2 12 14 30 32 84 86 132 134 222 224 354 356
n=14, 33427101763421: 0 2 90 92 120 122 156 158 168 170 240 242 246 248
n=14, 33526359566387: 0 2 42 44 84 86 114 116 120 122 270 272 330 332
n=14, 33672530724137: 0 2 42 44 60 62 84 86 90 92 114 116 132 134
n=14, 34037571628127: 0 2 60 62 72 74 132 134 210 212 240 242 270 272
n=14, 34364146488767: 0 2 60 62 132 134 174 176 264 266 270 272 300 302
n=14, 34487194139381: 0 2 90 92 96 98 156 158 198 200 216 218 258 260
n=14, 35020024542467: 0 2 54 56 84 86 150 152 240 242 264 266 282 284
n=14, 35089825258931: 0 2 60 62 186 188 198 200 240 242 258 260 300 302
n=14, 35541916744331: 0 2 48 50 96 98 126 128 138 140 180 182 228 230
n=14, 35814824171681: 0 2 78 80 120 122 126 128 198 200 240 242 258 260
n=14, 36074853919409: 0 2 30 32 42 44 48 50 138 140 180 182 222 224
n=14, 36098448434999: 0 2 12 14 108 110 150 152 192 194 228 230 252 254
n=14, 36169412425541: 0 2 36 38 66 68 96 98 108 110 126 128 180 182
n=14, 36206329321871: 0 2 18 20 60 62 78 80 126 128 156 158 228 230
n=14, 36313710812567: 0 2 24 26 42 44 84 86 270 272 354 356 390 392
n=14, 36439773469739: 0 2 12 14 162 164 258 260 390 392 432 434 468 470
n=14, 36607117810229: 0 2 72 74 150 152 168 170 180 182 192 194 198 200
n=14, 36616467359291: 0 2 30 32 66 68 96 98 108 110 138 140 156 158
n=14, 36885664883189: 0 2 12 14 48 50 78 80 90 92 132 134 150 152
n=14, 37025113479467: 0 2 120 122 180 182 192 194 234 236 240 242 252 254
n=14, 37439574213047: 0 2 12 14 42 44 114 116 144 146 180 182 222 224
n=14, 37488334452449: 0 2 18 20 60 62 72 74 108 110 138 140 150 152
n=14, 38177527088669: 0 2 48 50 78 80 192 194 210 212 222 224 258 260
n=14, 38553131732957: 0 2 84 86 174 176 240 242 270 272 414 416 420 422
n=14, 38683604914049: 0 2 12 14 30 32 60 62 132 134 138 140 168 170
n=14, 38690608642709: 0 2 72 74 78 80 132 134 168 170 240 242 270 272
n=14, 39422742891797: 0 2 24 26 72 74 114 116 192 194 234 236 264 266
n=14, 39494227338437: 0 2 84 86 132 134 174 176 180 182 210 212 282 284
n=14, 39650651483879: 0 2 18 20 42 44 72 74 78 80 102 104 120 122
n=14, 40080172987091: 0 2 18 20 96 98 156 158 186 188 198 200 210 212
n=14, 40114962661427: 0 2 42 44 54 56 120 122 210 212 222 224 234 236
n=14, 40136035137971: 0 2 36 38 66 68 78 80 108 110 120 122 126 128
n=14, 40228135263011: 0 2 66 68 78 80 90 92 126 128 210 212 300 302
n=14, 41303269724357: 0 2 42 44 84 86 102 104 114 116 144 146 180 182
n=14, 41355767891489: 0 2 60 62 72 74 78 80 198 200 228 230 252 254
n=14, 41382059738141: 0 2 36 38 66 68 78 80 90 92 126 128 150 152
n=14, 41558136195911: 0 2 18 20 30 32 168 170 186 188 210 212 240 242
n=14, 41693740698941: 0 2 36 38 48 50 78 80 156 158 198 200 270 272
n=14, 41857538717339: 0 2 42 44 48 50 72 74 78 80 102 104 120 122
n=14, 41956715074889: 0 2 18 20 30 32 42 44 60 62 102 104 168 170
n=14, 42188158174649: 0 2 48 50 60 62 102 104 180 182 198 200 240 242
n=14, 42213644584817: 0 2 54 56 60 62 114 116 192 194 222 224 234 236
n=14, 42596483347421: 0 2 78 80 90 92 126 128 150 152 210 212 258 260
n=14, 42872520681467: 0 2 24 26 180 182 204 206 234 236 252 254 294 296
n=14, 42899467515647: 0 2 30 32 42 44 72 74 84 86 120 122 150 152
n=14, 42974482365641: 0 2 30 32 36 38 126 128 138 140 156 158 168 170
n=14, 43070135601839: 0 2 78 80 90 92 150 152 210 212 342 344 348 350
n=14, 43201239793799: 0 2 42 44 90 92 138 140 162 164 168 170 192 194
n=14, 43319722965941: 0 2 30 32 78 80 90 92 120 122 156 158 198 200
n=14, 43511084652689: 0 2 12 14 108 110 120 122 162 164 192 194 210 212
n=14, 43920925565831: 0 2 18 20 30 32 108 110 210 212 240 242 270 272
n=14, 44117752627757: 0 2 30 32 42 44 72 74 84 86 132 134 174 176
n=14, 44205917200139: 0 2 48 50 60 62 102 104 120 122 162 164 198 200
n=14, 44451058754549: 0 2 18 20 30 32 102 104 150 152 198 200 210 212
n=14, 44519901761969: 0 2 102 104 138 140 240 242 258 260 270 272 342 344
n=14, 44578509755951: 0 2 6 8 66 68 78 80 90 92 96 98 138 140
n=14, 44813048006261: 0 2 6 8 96 98 120 122 150 152 210 212 216 218
n=14, 45124911226271: 0 2 6 8 30 32 90 92 126 128 186 188 240 242
n=14, 45340379120651: 0 2 18 20 60 62 66 68 96 98 138 140 156 158
n=14, 45384870147389: 0 2 42 44 108 110 132 134 180 182 192 194 222 224
n=14, 45434509634999: 0 2 18 20 42 44 102 104 168 170 198 200 210 212
n=14, 45831930218741: 0 2 6 8 78 80 198 200 270 272 336 338 366 368
n=14, 45862498290641: 0 2 48 50 216 218 336 338 366 368 396 398 420 422
n=14, 46240182525737: 0 2 72 74 90 92 102 104 114 116 144 146 210 212
n=14, 46715706839651: 0 2 48 50 66 68 120 122 180 182 246 248 258 260
n=14, 47032333501199: 0 2 12 14 132 134 168 170 180 182 210 212 252 254
n=14, 47391521591567: 0 2 24 26 60 62 114 116 234 236 240 242 264 266
n=14, 47643324887579: 0 2 12 14 150 152 180 182 192 194 198 200 222 224
n=14, 47886615469841: 0 2 36 38 96 98 120 122 156 158 168 170 210 212
n=14, 47932891030229: 0 2 18 20 30 32 78 80 210 212 240 242 258 260
n=14, 48313962544451: 0 2 126 128 156 158 216 218 258 260 288 290 300 302
n=14, 48560531422691: 0 2 30 32 96 98 120 122 156 158 198 200 210 212
n=14, 48601392745649: 0 2 30 32 168 170 210 212 228 230 240 242 258 260
n=14, 48642631847231: 0 2 36 38 90 92 120 122 186 188 210 212 240 242
n=14, 48682899135971: 0 2 6 8 48 50 90 92 168 170 270 272 300 302
n=14, 48861537189761: 0 2 30 32 126 128 168 170 216 218 240 242 246 248
n=14, 49061754862277: 0 2 24 26 42 44 54 56 132 134 210 212 264 266
n=14, 49356801187427: 0 2 42 44 54 56 114 116 180 182 192 194 240 242
n=14, 49661677451297: 0 2 72 74 90 92 132 134 174 176 294 296 300 302
n=14, 49684251836801: 0 2 36 38 96 98 138 140 150 152 156 158 240 242
n=14, 49715064801341: 0 2 18 20 90 92 120 122 156 158 168 170 216 218
n=14, 49919212525067: 0 2 12 14 54 56 84 86 90 92 114 116 132 134
n=14, 50283853500227: 0 2 42 44 84 86 114 116 174 176 180 182 222 224
n=14, 51073458297539: 0 2 12 14 42 44 150 152 198 200 228 230 252 254
n=14, 51149305034951: 0 2 30 32 60 62 90 92 126 128 156 158 180 182
n=14, 51320361577739: 0 2 48 50 60 62 72 74 102 104 132 134 168 170
n=14, 51539825055599: 0 2 18 20 72 74 102 104 138 140 150 152 192 194
n=14, 51548617170107: 0 2 72 74 120 122 180 182 210 212 234 236 252 254
n=14, 51801928803011: 0 2 6 8 36 38 60 62 168 170 210 212 228 230
n=14, 51931454559599: 0 2 42 44 102 104 138 140 168 170 192 194 198 200
n=14, 52247631420317: 0 2 12 14 54 56 60 62 90 92 114 116 132 134
n=14, 52321819798067: 0 2 24 26 42 44 54 56 84 86 120 122 240 242
n=14, 52534337227739: 0 2 42 44 48 50 90 92 108 110 120 122 132 134
n=14, 52954662600797: 0 2 24 26 42 44 102 104 192 194 234 236 240 242
n=14, 53834152881281: 0 2 36 38 48 50 66 68 78 80 90 92 180 182
n=14, 54478729942319: 0 2 18 20 42 44 60 62 132 134 138 140 168 170
n=14, 54572920645379: 0 2 12 14 48 50 90 92 120 122 132 134 180 182
n=14, 55319502328721: 0 2 96 98 120 122 138 140 168 170 210 212 306 308
n=14, 56010359770991: 0 2 90 92 96 98 138 140 168 170 216 218 306 308
n=14, 56372458316129: 0 2 42 44 48 50 60 62 72 74 90 92 168 170
n=14, 56536921321481: 0 2 96 98 108 110 150 152 168 170 186 188 198 200
n=14, 56876911670387: 0 2 42 44 54 56 90 92 174 176 180 182 210 212
n=14, 56915023441121: 0 2 18 20 30 32 60 62 96 98 108 110 126 128
n=14, 57208881039881: 0 2 138 140 156 158 198 200 306 308 336 338 366 368
n=14, 57314332951061: 0 2 6 8 18 20 30 32 60 62 138 140 156 158
n=14, 57505556052179: 0 2 48 50 102 104 138 140 210 212 222 224 228 230
n=14, 57527421771929: 0 2 18 20 30 32 42 44 132 134 168 170 180 182
n=14, 57600702164867: 0 2 114 116 120 122 180 182 210 212 234 236 240 242
n=14, 57711022149749: 0 2 48 50 90 92 132 134 150 152 192 194 222 224
n=14, 57888738142979: 0 2 18 20 30 32 42 44 132 134 210 212 258 260
n=14, 58069656366977: 0 2 54 56 90 92 132 134 180 182 192 194 204 206
n=14, 58071250274459: 0 2 30 32 42 44 48 50 78 80 102 104 132 134
n=14, 58092559187627: 0 2 42 44 72 74 222 224 264 266 282 284 312 314
n=14, 58301521931687: 0 2 12 14 24 26 60 62 114 116 210 212 270 272
n=14, 59092603713839: 0 2 42 44 78 80 150 152 168 170 222 224 252 254
n=14, 59406564561401: 0 2 66 68 78 80 120 122 156 158 276 278 288 290
n=14, 60670774825457: 0 2 12 14 30 32 42 44 84 86 102 104 192 194
n=14, 61199970210479: 0 2 18 20 60 62 90 92 102 104 168 170 240 242

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение15.10.2015, 15:24 
500 семёрочек!

(Семёрки №341-500)

n=14, 61344510134777: 0 2 42 44 72 74 84 86 102 104 174 176 240 242
n=14, 62123672505281: 0 2 48 50 60 62 156 158 186 188 246 248 258 260
n=14, 62319355395707: 0 2 42 44 60 62 180 182 210 212 300 302 312 314
n=14, 62468598215057: 0 2 84 86 114 116 192 194 210 212 264 266 282 284
n=14, 62848048866959: 0 2 12 14 42 44 72 74 102 104 108 110 168 170
n=14, 63042710484569: 0 2 12 14 48 50 72 74 132 134 210 212 228 230
n=14, 63444172792409: 0 2 12 14 48 50 78 80 120 122 132 134 210 212
n=14, 63785394431459: 0 2 30 32 72 74 108 110 138 140 150 152 198 200
n=14, 63958016056139: 0 2 18 20 30 32 132 134 162 164 168 170 228 230
n=14, 64232087307257: 0 2 42 44 72 74 84 86 102 104 114 116 132 134
n=14, 64641857750849: 0 2 78 80 108 110 120 122 168 170 192 194 210 212
n=14, 64899127089989: 0 2 12 14 90 92 108 110 150 152 192 194 210 212
n=14, 64962927180299: 0 2 12 14 42 44 150 152 192 194 198 200 222 224
n=14, 65128202431781: 0 2 60 62 66 68 108 110 126 128 210 212 240 242
n=14, 65645601139199: 0 2 12 14 42 44 102 104 132 134 168 170 180 182
n=14, 66002997714317: 0 2 24 26 30 32 102 104 210 212 222 224 252 254
n=14, 66050556030089: 0 2 12 14 42 44 168 170 360 362 408 410 432 434
n=14, 66067251072089: 0 2 78 80 120 122 150 152 168 170 198 200 210 212
n=14, 66410533201811: 0 2 30 32 66 68 78 80 120 122 126 128 168 170
n=14, 66601174646471: 0 2 48 50 90 92 168 170 216 218 246 248 288 290
n=14, 66658118674997: 0 2 12 14 120 122 132 134 150 152 174 176 180 182
n=14, 66706849809557: 0 2 144 146 150 152 180 182 192 194 240 242 270 272
n=14, 66851797609097: 0 2 12 14 54 56 72 74 114 116 132 134 144 146
n=14, 67059045666857: 0 2 60 62 72 74 180 182 192 194 210 212 264 266
n=14, 67539069836801: 0 2 6 8 36 38 90 92 96 98 120 122 138 140
n=14, 67973471774357: 0 2 30 32 90 92 114 116 120 122 132 134 144 146
n=14, 68488335185507: 0 2 12 14 42 44 54 56 72 74 84 86 150 152
n=14, 68570033115497: 0 2 42 44 90 92 102 104 114 116 144 146 174 176
n=14, 68791116617891: 0 2 48 50 66 68 96 98 120 122 180 182 330 332
n=14, 69289181410859: 0 2 48 50 60 62 102 104 132 134 180 182 198 200
n=14, 69498984982289: 0 2 18 20 78 80 90 92 102 104 120 122 132 134
n=14, 69864269831021: 0 2 30 32 66 68 78 80 120 122 156 158 180 182
n=14, 69922663943261: 0 2 120 122 126 128 138 140 150 152 216 218 258 260
n=14, 70147685864951: 0 2 30 32 36 38 90 92 120 122 156 158 186 188
n=14, 70199215160819: 0 2 120 122 222 224 252 254 258 260 288 290 330 332
n=14, 70422125335097: 0 2 90 92 132 134 174 176 180 182 222 224 312 314
n=14, 70512061586819: 0 2 30 32 72 74 138 140 210 212 222 224 228 230
n=14, 70583429862509: 0 2 18 20 90 92 102 104 168 170 180 182 198 200
n=14, 70786600038989: 0 2 30 32 72 74 90 92 162 164 168 170 198 200
n=14, 71255913225149: 0 2 30 32 48 50 78 80 102 104 120 122 132 134
n=14, 71451311227031: 0 2 30 32 66 68 138 140 150 152 156 158 240 242
n=14, 71504338908389: 0 2 48 50 102 104 162 164 168 170 210 212 252 254
n=14, 71675626854059: 0 2 18 20 48 50 72 74 90 92 132 134 138 140
n=14, 71725711180031: 0 2 30 32 186 188 198 200 276 278 336 338 348 350
n=14, 72398627166869: 0 2 42 44 48 50 108 110 120 122 150 152 210 212
n=14, 73256318361041: 0 2 30 32 60 62 90 92 126 128 168 170 210 212
n=14, 73292977525217: 0 2 30 32 72 74 84 86 114 116 132 134 162 164
n=14, 73510123893497: 0 2 12 14 54 56 102 104 174 176 210 212 222 224
n=14, 73754885725061: 0 2 30 32 36 38 168 170 186 188 246 248 258 260
n=14, 74136220223867: 0 2 42 44 72 74 114 116 174 176 222 224 270 272
n=14, 74358276941327: 0 2 42 44 54 56 192 194 210 212 222 224 240 242
n=14, 74660706388001: 0 2 60 62 108 110 138 140 180 182 186 188 198 200
n=14, 75418256381621: 0 2 18 20 96 98 108 110 126 128 138 140 156 158
n=14, 75590842360139: 0 2 12 14 42 44 72 74 78 80 120 122 210 212
n=14, 76249154355767: 0 2 30 32 54 56 84 86 150 152 180 182 222 224
n=14, 76340574001031: 0 2 18 20 30 32 60 62 96 98 138 140 198 200
n=14, 76694925687449: 0 2 42 44 60 62 168 170 198 200 210 212 252 254
n=14, 77070134455511: 0 2 30 32 138 140 150 152 156 158 168 170 240 242
n=14, 77447284631777: 0 2 30 32 54 56 60 62 84 86 90 92 132 134
n=14, 78207349541549: 0 2 18 20 42 44 90 92 138 140 222 224 258 260
n=14, 78345749816987: 0 2 30 32 42 44 120 122 162 164 204 206 210 212
n=14, 78581021100311: 0 2 36 38 78 80 168 170 186 188 198 200 246 248
n=14, 78686198104541: 0 2 60 62 108 110 150 152 156 158 198 200 210 212
n=14, 78906822118571: 0 2 186 188 336 338 348 350 546 548 570 572 588 590
n=14, 78985822771199: 0 2 42 44 78 80 180 182 198 200 210 212 282 284
n=14, 79901745300227: 0 2 12 14 54 56 102 104 210 212 222 224 342 344
n=14, 80805792472049: 0 2 12 14 72 74 78 80 138 140 150 152 192 194
n=14, 80973316171829: 0 2 12 14 48 50 72 74 132 134 180 182 198 200
n=14, 81803022204089: 0 2 90 92 102 104 198 200 300 302 312 314 378 380
n=14, 82017287025647: 0 2 84 86 150 152 162 164 204 206 294 296 330 332
n=14, 82104522209819: 0 2 72 74 90 92 102 104 180 182 222 224 228 230
n=14, 82499970461591: 0 2 48 50 60 62 90 92 126 128 138 140 210 212
n=14, 82602342169769: 0 2 102 104 120 122 132 134 168 170 240 242 270 272
n=14, 82822231234661: 0 2 6 8 18 20 78 80 120 122 156 158 246 248
n=14, 82933065086021: 0 2 78 80 120 122 150 152 336 338 348 350 360 362
n=14, 83010220466321: 0 2 36 38 66 68 108 110 126 128 150 152 168 170
n=14, 83105116947647: 0 2 54 56 300 302 312 314 342 344 420 422 432 434
n=14, 83349878707367: 0 2 24 26 42 44 60 62 72 74 180 182 192 194
n=14, 83384681542817: 0 2 12 14 30 32 54 56 174 176 252 254 282 284
n=14, 83588811166319: 0 2 18 20 30 32 60 62 90 92 132 134 138 140
n=14, 83667434368619: 0 2 48 50 78 80 90 92 132 134 168 170 180 182
n=14, 83756128082687: 0 2 30 32 54 56 84 86 102 104 132 134 144 146
n=14, 84041240855249: 0 2 72 74 168 170 192 194 198 200 228 230 252 254
n=14, 84041715977627: 0 2 90 92 102 104 204 206 282 284 300 302 312 314
n=14, 84247834046939: 0 2 120 122 132 134 138 140 180 182 210 212 222 224
n=14, 84880145738957: 0 2 30 32 72 74 174 176 204 206 240 242 330 332
n=14, 85161048780251: 0 2 6 8 90 92 108 110 168 170 288 290 318 320
n=14, 85767208737557: 0 2 84 86 144 146 180 182 240 242 294 296 354 356
n=14, 85810264139669: 0 2 18 20 60 62 192 194 198 200 240 242 252 254
n=14, 86147519896769: 0 2 132 134 168 170 240 242 378 380 438 440 468 470
n=14, 86979213204251: 0 2 18 20 30 32 60 62 156 158 186 188 198 200
n=14, 87071714937377: 0 2 84 86 102 104 132 134 162 164 174 176 210 212
n=14, 87104538187307: 0 2 54 56 174 176 180 182 252 254 264 266 342 344
n=14, 87312302897621: 0 2 18 20 48 50 60 62 90 92 126 128 216 218
n=14, 87460957634231: 0 2 18 20 96 98 126 128 150 152 210 212 240 242
n=14, 87492204078467: 0 2 12 14 42 44 84 86 114 116 180 182 210 212
n=14, 87829104456869: 0 2 18 20 72 74 150 152 180 182 198 200 222 224
n=14, 88478144949317: 0 2 12 14 54 56 102 104 114 116 132 134 222 224
n=14, 88595267052827: 0 2 12 14 42 44 84 86 150 152 174 176 192 194
n=14, 89084180204471: 0 2 18 20 48 50 60 62 90 92 138 140 168 170
n=14, 89292997509827: 0 2 42 44 60 62 150 152 312 314 402 404 504 506
n=14, 89365192069157: 0 2 12 14 54 56 114 116 144 146 222 224 240 242
n=14, 89451603330029: 0 2 48 50 78 80 108 110 132 134 180 182 222 224
n=14, 89583166780031: 0 2 78 80 108 110 156 158 288 290 306 308 330 332
n=14, 89626628495231: 0 2 18 20 36 38 78 80 120 122 198 200 216 218
n=14, 89823325299689: 0 2 48 50 78 80 102 104 132 134 300 302 330 332
n=14, 89898553407959: 0 2 60 62 132 134 240 242 270 272 282 284 330 332
n=14, 89946042365897: 0 2 84 86 90 92 144 146 222 224 240 242 324 326
n=14, 90171724257071: 0 2 18 20 120 122 156 158 216 218 246 248 270 272
n=14, 90229565040341: 0 2 138 140 150 152 240 242 348 350 366 368 390 392
n=14, 90918048085001: 0 2 18 20 156 158 198 200 228 230 258 260 300 302
n=14, 90996519776339: 0 2 60 62 102 104 210 212 300 302 342 344 372 374
n=14, 91137082592321: 0 2 36 38 108 110 150 152 210 212 306 308 318 320
n=14, 91163539231859: 0 2 12 14 42 44 48 50 108 110 210 212 252 254
n=14, 91440827413799: 0 2 42 44 48 50 108 110 120 122 162 164 180 182
n=14, 91495957638269: 0 2 18 20 42 44 60 62 90 92 120 122 132 134
n=14, 91555198990259: 0 2 12 14 30 32 42 44 132 134 138 140 240 242
n=14, 91632138638429: 0 2 30 32 48 50 102 104 132 134 138 140 198 200
n=14, 91937526462581: 0 2 18 20 48 50 60 62 90 92 126 128 288 290
n=14, 92035227666659: 0 2 30 32 138 140 168 170 198 200 210 212 222 224
n=14, 92038967697317: 0 2 12 14 42 44 54 56 60 62 210 212 240 242
n=14, 92078672543861: 0 2 78 80 90 92 108 110 126 128 180 182 210 212
n=14, 92123817935087: 0 2 42 44 54 56 120 122 162 164 222 224 264 266
n=14, 92513445187307: 0 2 60 62 102 104 174 176 180 182 222 224 240 242
n=14, 92613424421381: 0 2 48 50 78 80 108 110 180 182 210 212 216 218
n=14, 92846026772621: 0 2 78 80 126 128 150 152 168 170 210 212 246 248
n=14, 92887375598819: 0 2 48 50 168 170 222 224 228 230 270 272 312 314
n=14, 93232721399759: 0 2 12 14 42 44 138 140 198 200 300 302 342 344
n=14, 93345936673739: 0 2 72 74 120 122 162 164 168 170 192 194 222 224
n=14, 93555179489747: 0 2 42 44 132 134 162 164 222 224 264 266 372 374
n=14, 93605207907551: 0 2 6 8 30 32 90 92 96 98 138 140 228 230
n=14, 93735500554877: 0 2 24 26 30 32 54 56 60 62 84 86 102 104
n=14, 93751588394351: 0 2 18 20 60 62 108 110 156 158 180 182 186 188
n=14, 93904390950449: 0 2 30 32 210 212 252 254 258 260 288 290 312 314
n=14, 94155847528397: 0 2 42 44 132 134 174 176 210 212 252 254 264 266
n=14, 94168369554359: 0 2 18 20 90 92 102 104 258 260 270 272 312 314
n=14, 94269104162249: 0 2 18 20 90 92 120 122 198 200 210 212 252 254
n=14, 94314764960279: 0 2 12 14 42 44 48 50 78 80 90 92 138 140
n=14, 94782503006129: 0 2 30 32 78 80 180 182 222 224 252 254 288 290
n=14, 94900586765261: 0 2 6 8 60 62 90 92 156 158 168 170 210 212
n=14, 95637085369361: 0 2 18 20 96 98 126 128 156 158 180 182 228 230
n=14, 96149083300397: 0 2 54 56 84 86 114 116 150 152 162 164 204 206
n=14, 96155302483781: 0 2 6 8 36 38 60 62 168 170 228 230 246 248
n=14, 96756616941557: 0 2 84 86 240 242 432 434 462 464 564 566 570 572
n=14, 96939256990439: 0 2 108 110 132 134 138 140 162 164 210 212 318 320
n=14, 97021135747187: 0 2 42 44 114 116 150 152 192 194 210 212 234 236
n=14, 97413187396619: 0 2 42 44 48 50 78 80 150 152 162 164 180 182
n=14, 97712252940329: 0 2 18 20 42 44 60 62 210 212 222 224 252 254
n=14, 97828434497681: 0 2 18 20 60 62 108 110 138 140 156 158 186 188
n=14, 97913787239207: 0 2 30 32 60 62 102 104 120 122 144 146 210 212
n=14, 97953590258087: 0 2 12 14 90 92 102 104 132 134 174 176 180 182
n=14, 98447222765891: 0 2 60 62 108 110 126 128 156 158 180 182 228 230
n=14, 98703329251229: 0 2 42 44 48 50 132 134 150 152 162 164 180 182
n=14, 98737093353137: 0 2 24 26 54 56 72 74 120 122 150 152 204 206
n=14, 98802088462871: 0 2 6 8 66 68 120 122 138 140 180 182 210 212
n=14, 98981022956999: 0 2 30 32 72 74 78 80 138 140 210 212 240 242
n=14, 99701997341939: 0 2 12 14 42 44 168 170 210 212 222 224 282 284
n=14, 99835799274689: 0 2 18 20 60 62 162 164 168 170 228 230 252 254
n=14, 100253815585739: 0 2 12 14 30 32 48 50 90 92 180 182 210 212
n=14, 100532373960581: 0 2 66 68 78 80 168 170 180 182 210 212 288 290

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение16.10.2015, 11:40 
Аватара пользователя
Собрала наборы из 8 пар простых чисел-близнецов, следующих подряд без лишних простых чисел между ними и без пересечений (аналогично семёркам пар близнецов в последовательности OEIS A035795)
Давно известная первая восьмёрочка:
Код:
1107819732821: 0, 2, 90, 92, 96, 98, 126, 128, 138, 140, 156, 158, 216, 218, 240, 242

Решение Begemot82:
Код:
9667145661911: 0, 2, 36, 38, 48, 50, 90, 92, 108, 110, 126, 128, 150, 152, 216, 218

Пока неизвестно, существуют ли между этими решениями другие решения.
И последовательности таких наборов в OEIS вроде пока нет, насколько мне известно.

А дальше уже следуют симметричные кортежи, то есть КПППЧ; это из пандиагональных квадратов 4-го порядка, представленных Jarek на конкурс (первые числа кортежей пока не показываю, но идут они в порядке возрастания, причём $P_1>9667145661911$):
Код:
P1: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P2: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P3: 0, 2, 30, 32, 60, 62, 90, 92, 96, 98, 126, 128, 156, 158, 186, 188
P4: 0, 2, 12, 14, 42, 44, 54, 56, 120, 122, 132, 134, 162, 164, 174, 176
P5: 0, 2, 30, 32, 42, 44, 48, 50, 72, 74, 78, 80, 90, 92, 120, 122
P6: 0, 2, 30, 32, 60, 62, 90, 92, 138, 140, 168, 170, 198, 200, 228, 230
P7: 0, 2, 12, 14, 42, 44, 54, 56, 90, 92, 102, 104, 132, 134, 144, 146
P8: 0, 2, 30, 32, 42, 44, 72, 74, 132, 134, 162, 164, 174, 176, 204, 206
P9: 0, 2, 30, 32, 42, 44, 72, 74, 78, 80, 108, 110, 120, 122, 150, 152
P10: 0, 2, 60, 62, 102, 104, 162, 164, 168, 170, 228, 230, 270, 272, 330, 332
P11: 0, 2, 48, 50, 120, 122, 132, 134, 168, 170, 180, 182, 252, 254, 300, 302

Весьма интересные восьмёрочки.
Значит, имеем два вида таких восьмёрочек: симметричные и не симметричные.
Пока неизвестно, является ли cимметричная восьмёрочка с $P_1$ минимальной по значению $P_1$.

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение16.10.2015, 17:03 
Nataly-Mak в сообщении #1063311 писал(а):
Пока неизвестно, существуют ли между этими решениями другие решения.
Существуют, ещё ровно 5 решений. И между прочим они были выложены прямо здесь выше, и не только эти 7, но и все первые 12 решений. Если вы их не видите - это только ваши проблемы.

Nataly-Mak в сообщении #1063311 писал(а):
И последовательности таких наборов в OEIS вроде пока нет, насколько мне известно.
Плохо вам известно, уже есть - A263205, уже 27 элементов в ней и вот ещё два:
n=16, 123094200077687: 0 2 12 14 102 104 180 182 192 194 222 224 234 236 282 284
n=16, 125887575288611: 0 2 6 8 48 50 66 68 78 80 90 92 138 140 180 182

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение16.10.2015, 18:25 
И 30-31-е члены последовательности:
n=16, 159932796148577: 0 2 12 14 84 86 132 134 180 182 210 212 270 272 312 314
n=16, 162924155676551: 0 2 66 68 78 80 258 260 300 302 306 308 318 320 360 362

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение16.10.2015, 19:29 
Nataly-Mak в сообщении #1063311 писал(а):
(первые числа кортежей пока не показываю, но идут они в порядке возрастания):
Код:
P1: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P2: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P3: 0, 2, 30, 32, 60, 62, 90, 92, 96, 98, 126, 128, 156, 158, 186, 188
P4: 0, 2, 12, 14, 42, 44, 54, 56, 120, 122, 132, 134, 162, 164, 174, 176
P5: 0, 2, 30, 32, 42, 44, 48, 50, 72, 74, 78, 80, 90, 92, 120, 122
Раскрою тайну: P5=1960984050584219159 (см. сообщение). Значит все следующие Px больше 2е18.
А минимальный квадрат стоит искать между 160е12 и 2е18.

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение19.10.2015, 09:41 
Аватара пользователя
Цитата:
1 Jarek 356 17 5 334 19/10/2015

У Jarek есть пополнение (новые решения) в задаче #1.
В задаче #3 уже 334 квадрата! И 5 решений в задаче #2.
Напомню: в задаче #2 найдены симметричные кортежи с минимальными диаметрами для $k=15,16,17,18,20$.
Пока ничего неизвестно (по крайней мере, мне) о минимальности этих решений по значениям элементов кортежей (кроме $k=16$).
Это отличные результаты.
Но конкурс продолжается (до конца много времени - до 31 декабря)! Можно найти ещё много хороших и замечательных решений.
Уважаемые форумчане и гости форума!
Подключайтесь к решению этих сложных и интересных задач.

-- Пн окт 19, 2015 10:49:05 --

Пока писала сообщение, в задаче #1 прибавилось ещё одно решение :-) Высший пилотаж!

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение25.10.2015, 06:29 
Аватара пользователя
Цитата:
1 Jarek 359 20 5 334 24/10/2015

Jarek
есть ли в задаче #1 другие решения, кроме $k=17$?

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение25.10.2015, 11:09 
Nataly-Mak в сообщении #1066411 писал(а):
Цитата:
1 Jarek 359 20 5 334 24/10/2015

Jarek
есть ли в задаче #1 другие решения, кроме $k=17$?

No, only 17's.

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение02.11.2015, 10:36 
Аватара пользователя
Цитата:
1 Jarek 363 24 5 334 02/11/2015

Jarek
не хотят 17-ки превращаться в 19-ку? :-)
Несказанно нам повезло с превращением 18 --> 20.

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение02.11.2015, 11:12 
I am checking all the 17's found, but none extends to a 19. Currently I am finding very few new 17's, so chances of finding one extendable to a 19 are rather small :-(

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение06.11.2015, 15:09 
Dmitriy40 в сообщении #1063476 писал(а):
Nataly-Mak в сообщении #1063311 писал(а):
(первые числа кортежей пока не показываю, но идут они в порядке возрастания):
Код:
P1: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P2: 0, 2, 42, 44, 78, 80, 90, 92, 120, 122, 132, 134, 168, 170, 210, 212
P3: 0, 2, 30, 32, 60, 62, 90, 92, 96, 98, 126, 128, 156, 158, 186, 188
P4: 0, 2, 12, 14, 42, 44, 54, 56, 120, 122, 132, 134, 162, 164, 174, 176
P5: 0, 2, 30, 32, 42, 44, 48, 50, 72, 74, 78, 80, 90, 92, 120, 122
Раскрою тайну: P5=1960984050584219159 (см. сообщение). Значит все следующие Px больше 2е18.
Ещё раскрою тайну, P1=119890755200639999 и значит минимальный квадрат стоит искать между 26e15 (досюда общими усилиями выполнена полная проверка) и 120е15.

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение06.11.2015, 15:11 
Аватара пользователя
(Наверное, было бы логично тему закрыть. В связи с.)

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение06.11.2015, 15:22 

(Оффтоп)

Не та логика.
Конкурс не закончен. Хотя бы у Jarek должна быть возможность рассказать о результатах.

 
 
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение06.11.2015, 15:41 
Аватара пользователя

(Оффтоп)

Begemot82, да, Вам, как участнику конкурса видней, спасибо. Если конкурс не требует участия Nataly-Mak, то конечно. Моё предложение было общего плана - я посчитал, что человеку может быть неприятно не иметь возможности ответить.

 
 
 [ Сообщений: 1360 ]  На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 91  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group