Чтобы программу модифицировать, надо её иметь.
Выкладываю программу на PARI/GP, по которой выполняю поиск девяти пар последовательных простых чисел-близнецов (между ними могут быть другие простые числа, на них не обращаем внимания), которые образуют симметричный набор:
Код:
checktuple(v) = {
my(S = 2*v[5]);
if((v[1]+v[9] == S) && (v[2]+v[8] == S) && (v[3]+v[7] == S) && (v[4]+v[6] == S), return(1), return(0))
}
changetuple(v,p) = vector(9, i, if(i<9, v[i+1], p));
tuple = [1269999995417, 1269999995699, 1269999995861, 1269999997181, 1269999997571, 1269999998297, 1269999998921, 1269999999017, 1269999999347];
forprime(p = nextprime(tuple[9]+1),1280000000000, if(ispseudoprime(p+2), tuple = changetuple(tuple,p); if(checktuple(tuple), print(tuple); break)));
print(tuple)
Эта программка выполняется в настоящий момент. Вы видите в ней вектор tuple, с которого начинается поиск в данном интервале, и видите конец проверяемого интервала - 1280000000000.
Проверяю порциями по 10 млрд. Когда данный интервал проверится, программа выдаст вектор tuple, на котором закончилась проверка. Один такой интервал длиной 10 млрд проверяется около часа, безобразно медленно!
Затем вводим в программу этот новый вектор и новый конец интервала (1290000000000) и снова запускаем программу.
Вот такая у меня проверка. Долго и нудно, но пока терпится, буду проверять.
Уверена, что можно написать программу с применением генератора
primesieve, которая решит эту задачу раз в 20 быстрее. Но я не умею прикручивать этот генератор, увы
-- Вс окт 25, 2015 23:21:48 --Напомню последний, найденный мной, симметричный набор:
Код:
1110317288231: 0, 450, 648, 756, 1038, 1320, 1428, 1626, 2076
здесь показаны только первые числа пар близнецов. Если показать пары полностью, то:
Код:
1110317288231: 0, 2, 450, 452, 648, 650, 756, 758, 1038, 1040, 1320, 1322, 1428, 1430, 1626, 1628, 2076, 2078
Красивая симметричная 18-ка из близнецов, но не из последовательных простых чисел, то есть не КПППЧ.
Магический квадрат 3-го порядка надо будет составить из первых чисел пар близнецов (ну, и из вторых чисел он, разумеется, тоже составится, если составится из первых).
-- Вс окт 25, 2015 23:32:42 --maxalа можно приведённую программку оптимизировать на PARI/GP
Ну чтобы хоть чуть-чуть побыстрее работала.