Рассказываю иностранцам дальше
Цитата:
Should you find many solutions of the problem for
, you can make pandiagonal squares of order 4.
For example, symmetrical composition
Код:
71580585467: 0, 180, 420, 600, 1194, 1374, 1614, 1794
transform into the next symmetrical composition:
Код:
71580585467: 0, 2, 180, 182, 420, 422, 600, 602, 1194, 1196, 1374, 1376, 1614, 1616, 1794, 1796
This symmetrical composition gives the following pandiagonal square of order 4:
Код:
71580585467 +
0 1794 422 1376
602 1196 180 1614
1374 420 1796 2
1616 182 1194 600
Я для
проверила до
.
Вот последняя порция решений, которая содержит приведённый набор, дающий пандиагональный квадрат 4-го порядка из последовательных близнецов:
Код:
[70148273801, 70148274191, 70148274221, 70148274767, 70148275031, 70148275577, 70148275607, 70148275997]
[71580585467, 71580585647, 71580585887, 71580586067, 71580586661, 71580586841, 71580587081, 71580587261]
[71684125169, 71684125391, 71684125439, 71684125451, 71684125727, 71684125739, 71684125787, 71684126009]
[72665185139, 72665185181, 72665185319, 72665185739, 72665185751, 72665186171, 72665186309, 72665186351]
[73162550099, 73162550567, 73162550687, 73162550717, 73162551461, 73162551491, 73162551611, 73162552079]
[73683085457, 73683085739, 73683086261, 73683086459, 73683086759, 73683086957, 73683087479, 73683087761]
[73891985771, 73891985831, 73891986149, 73891986671, 73891986809, 73891987331, 73891987649, 73891987709]
[74626807217, 74626807289, 74626807397, 74626807427, 74626808621, 74626808651, 74626808759, 74626808831]
[74962049651, 74962049711, 74962049759, 74962050071, 74962050827, 74962051139, 74962051187, 74962051247]
[75521732789, 75521733101, 75521733227, 75521733407, 75521733431, 75521733611, 75521733737, 75521734049]
[75543015797, 75543015881, 75543016301, 75543017057, 75543017651, 75543018407, 75543018827, 75543018911]
[75651725579, 75651725729, 75651725867, 75651725999, 75651726077, 75651726209, 75651726347, 75651726497]
[76789781399, 76789781699, 76789782059, 76789782269, 76789784009, 76789784219, 76789784579, 76789784879]
[77010739649, 77010740267, 77010740687, 77010740759, 77010740897, 77010740969, 77010741389, 77010742007]
[77128375187, 77128375277, 77128375991, 77128376291, 77128376447, 77128376747, 77128377461, 77128377551]
[77404269011, 77404269191, 77404269539, 77404269881, 77404270157, 77404270499, 77404270847, 77404271027]
[77644019699, 77644019951, 77644020131, 77644020521, 77644021157, 77644021547, 77644021727, 77644021979]
[77847827117, 77847827219, 77847827249, 77847827567, 77847827819, 77847828137, 77847828167, 77847828269]
[79192986407, 79192986737, 79192987007, 79192987397, 79192988141, 79192988531, 79192988801, 79192989131]
Дальше не стала проверять. Конечно, таких квадратов можно найти ещё много, потому что симметричных наборов находится много.