2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 
Сообщение28.02.2008, 09:43 
Заблокирован


26/01/06

302
Ростов на Дону
AD писал(а):
Теорема такая есть. В школе проходят. Если положительные числа a, b, c таковы, что сумма каждых двух из них больше третьего, то существует (единственный) треугольник, стороны которого равны a, b и c. Можете в качестве упражнения провести требуемое построение циркулем и линейкой. Еще вопросы?

Уважаемый AD ! Конечно есть.
Взяв два упомянутых треугольника и сложив их сторонами $z$ мы всегда получим параллелограмм у которого боковые стороны раны $x$, - основания - $y$; одна диагональ будет равна $z$ а вторую обозначим $d$. Для параллелограмма справедливо: $2x^2+2y^2=z^2+d^2$. Ясно, что при целых $z;y;x$ число $d^2$ - целое. Вопрос - каким будет число $d=\sqrt{2x^2+2y^2-z^2$, если учесть, что $(x,y<z)=1$, а число $b=\frac{z^2-x^2}{y}$ - рациональная дробь?
Дед.

 Профиль  
                  
 
 
Сообщение28.02.2008, 10:20 


23/01/07
3419
Новосибирск
bot писал(а):
Батороев задавал условие и просто пропустил начальное слово пусть.

Точно, пропустил слово «пусть»!

Попытаюсь исправиться…, развив известную Вам тему из другого раздела.

Пусть имеется линейка с нанесенными на ней делениями в виде чисел натурального ряда в $n$-ной степени.

Вывод из ВТФ:
Такой линейкой нельзя отмерить отрезок, длина которого равна любому натуральному числу в той же степени, если только $n$ не больше 2-х (если $n=1$, то отмеряется любой целочисленный отрезок, если $n=2$, то - почти любой, за исключением отрезков, степень четности которых равна $ 2^1 $). :)

 Профиль  
                  
 
 
Сообщение28.02.2008, 11:35 
Экс-модератор


17/06/06
5004
ljubarcev писал(а):
Для параллелограмма справедливо: $2x^2+2y^2=z^2+d^2$. Ясно, что при целых $z;y;x$ число $d^2$ - целое. Вопрос - каким будет число $d=\sqrt{2x^2+2y^2-z^2$, если учесть, что $(x,y<z)=1$, а число $b=\frac{z^2-x^2}{y}$ - рациональная дробь?
Не, не, не, это не ко мне вопрос. Я умею только тривиальные вещи говорить.

Что значит "каким будет?" :? Ну, алгебраическим уж точно будет.

Примеры
$x=3$,$y=4$,$z=5$, $d=5$.
$x=2$,$y=3$,$z=4$, $d=\sqrt{10}$.
$x=1$,$y=1$,$z=1$, $d=\sqrt{3}$.
показывают, что ни рациональность, ни иррациональность утверждать нельзя.

Запись $(x,y<z)=1$ не понятна. И при чем тут $b$ вообще?

 Профиль  
                  
 
 
Сообщение29.02.2008, 15:10 
Заблокирован


26/01/06

302
Ростов на Дону
AD писал(а):
Не, не, не, это не ко мне вопрос. Я умею только тривиальные вещи говорить.

Что значит "каким будет?" :? Ну, алгебраическим уж точно будет.

Примеры
$x=3$,$y=4$,$z=5$, $d=5$.
$x=2$,$y=3$,$z=4$, $d=\sqrt{10}$.
$x=1$,$y=1$,$z=1$, $d=\sqrt{3}$.
показывают, что ни рациональность, ни иррациональность утверждать нельзя.

Запись $(x,y<z)=1$ не понятна. И при чем тут $b$ вообще?

Уважаемый AD !
1.Записью вида $(x;y<z)=1$ я записал:- "предполагается что числа $x;y;z$ взаимно простые и что число $z$ среди них – наибольшее".
2.О числе $b$. Взяв два упомянутых треугольника и наложив их друг на друга так что бы совпали стороны $y$ получим равнобокую трапецию с боковыми сторонами $x$, диагоналями $z$, нижним основанием $y$, тогда верхнее основание и будет $b$. $by=z^2-x^2$ в соответствии с теоремой Птолемея, так как вокруг любой равнобокой трапеции можно всегда описать окружность, а теорема Птолемея справедлива для любого четырёхугольника, вокруг которого можно описать окружность.
3.Поступая аналогично, взяв за нижнее основание $x$ - получим - $b_1x=z^2-y^2$, а если $z$ - то $b_2z=y^2-x^2$.
Так как треугольники одни и те же, то одновременно $by=z^2-x^2$; $b_1x=z^2-y^2$, $b_2z=y^2-x^2$.
Отсюда получаем равенство $by=b_1x+b_2z$, которое ну очень похоже на уравнение Диофанта и было бы таковым при целых $b;b_1;b_2$. Например, при $b=y$; или $b_1=x$ или $b_2=z$ всегда будет $z^2=x^2+y^2$. Тут Ваш «банальный» пример $x=3;y=4;z=5$ попадает в точку.
В нашем случае при $n>2$ числа $b;b_1;b_2$ дробные –рациональные. Логично возникает вопрос – имеет ли решения уравнение $by=b_1x+b_2z$ решения при $(x;y;z)=1$ ?
Дед.

 Профиль  
                  
 
 Re: Короткое доказательство ВТФ
Сообщение29.02.2008, 15:36 


16/03/07

823
Tashkent
shwedka писал(а):
Yarkin писал(а):
    Эти условия необходимы, но их недостаточно (см. теорему существования у С. И. Новоселова в его книге"Специальный курс тригонометрии").

И чего только не узнаешь!!!!
Стало быть, условий x+y>z, при том, что x,y<z,
не будет достаточно для существования треугольника!!!
Раскройте тайну,
ПОЧЕМУУУУ?

    $x, y, z$ числа или отрезки?

 Профиль  
                  
 
 Re: Короткое доказательство ВТФ
Сообщение29.02.2008, 16:15 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Yarkin писал(а):
shwedka писал(а):
Yarkin писал(а):
    Эти условия необходимы, но их недостаточно (см. теорему существования у С. И. Новоселова в его книге"Специальный курс тригонометрии").

И чего только не узнаешь!!!!
Стало быть, условий x+y>z, при том, что x,y<z,
не будет достаточно для существования треугольника!!!
Раскройте тайну,
ПОЧЕМУУУУ?

    $x, y, z$ числа или отрезки?

положительные числа, являющиеся длинами отрезков.

 Профиль  
                  
 
 
Сообщение29.02.2008, 21:59 
Экс-модератор


17/06/06
5004
Теорема. Всякое положительное число является длинной некоторого отрезка.

 Профиль  
                  
 
 
Сообщение29.02.2008, 23:43 


30/12/07
94
Цитата:
Теорема. Всякое положительное число является длинной некоторого отрезка

Ловлю на слове - это когда вы будете критиковать "фундаментальные графики". :wink:

 Профиль  
                  
 
 
Сообщение03.03.2008, 16:23 
Экс-модератор


17/06/06
5004
sergmirdin писал(а):
Цитата:
Теорема. Всякое положительное число является длинной некоторого отрезка

Ловлю на слове - это когда вы будете критиковать "фундаментальные графики". :wink:
Чяво? :shock:

 Профиль  
                  
 
 
Сообщение03.03.2008, 22:45 


16/03/07

823
Tashkent
shwedka писал(а):
положительные числа, являющиеся длинами отрезков.


    Для них, пока они не образуют замкнутую фигуру, достаточно одного уравнения: $x^n+y^n=z^n, n=2, 3,...$В противном случае - недостаточно. Так что использовать эту фигуру в качестве решения этого уравнения нельзя.

 Профиль  
                  
 
 
Сообщение03.03.2008, 22:46 
Экс-модератор


17/06/06
5004
Что значит "достаточно"? Достаточно для чего? Это что - определение, аксиома, теорема?

 Профиль  
                  
 
 
Сообщение04.03.2008, 16:08 


16/03/07

823
Tashkent
AD писал(а):
Что значит "достаточно"? Достаточно для чего? Это что - определение, аксиома, теорема?


    Теорема.

 Профиль  
                  
 
 
Сообщение04.03.2008, 16:18 
Заслуженный участник
Аватара пользователя


21/12/05
5908
Новосибирск
Yarkin писал(а):
Теорема.

Ну что будем вытягивать, как у двоечника на экзамене?
Формулировку пожалуйста или ссылку.

 Профиль  
                  
 
 
Сообщение04.03.2008, 22:46 


16/03/07

823
Tashkent
bot писал(а):
Ну что будем вытягивать, как у двоечника на экзамене?


    Вы от всех АУ-ков говорите или делитесь опытом?
bot писал(а):
Формулировку пожалуйста или ссылку.

    Достаточно названия: теорема косинусов.

 Профиль  
                  
 
 
Сообщение04.03.2008, 23:54 
Заслуженный участник
Аватара пользователя


22/11/06
1096
Одесса, ОНУ ИМЭМ
Нет, если можно, все-таки приведите вашу формулировку теоремы косинусов. Я не могу сходу провести аналогию между вашим высказыванием и равенством $c^2=a^2+b^2-2ab\cos\alpha$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 77 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Antoshka


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group