2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 62  След.
 
 Сократ?
Сообщение22.07.2007, 08:40 


03/09/05
217
Bulgaria
В соседней рубрике об управление страной постоянными референдумами упомянули Сократа как аргумент. Вот и вспомнил старый анекдот о нем:
Жена Сократа плачет когда он поднымает кубок с ядом.
Он: Почему ты плачеш бедная?
Она: Потому что знаю, что умираеш невинным.
Сократ: А тебе было бы лучше, если я умирал бы виноватым?

 Профиль  
                  
 
 
Сообщение22.07.2007, 10:06 
Заслуженный участник
Аватара пользователя


20/07/05
695
Ярославль
Elementary geometry problem

"Ну тупые они эти американцы, ну тупые."© :lol:

 Профиль  
                  
 
 
Сообщение22.07.2007, 12:04 
Экс-модератор


12/06/05
1595
MSU
Борис Лейкин писал(а):
Ну тупые они эти американцы, ну тупые

И всё же я бы назвал ваш вывод несколько скоропалительным. Пять ответов - это мало.

Для полноты эксперимента не поленитесь, задайте это на каком-нибудь нашем форуме. Я думаю, результаты будут получше, но не идеальны.

 Профиль  
                  
 
 
Сообщение23.07.2007, 09:07 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
Борис Лейкин писал(а):
Elementary geometry problem

"Ну тупые они эти американцы, ну тупые."© :lol:

Не понял - 8 правильных ответов (от американцев?) из 9 это плохой результат?

Что это байка от Арнольда, не знал. Числа выбирал от фонаря, кроме провокационного 30 и верного 24.
А небрежно составленных задач и в наших задачниках немало, в частности и с геометрически нереализуемыми числовыми данными.

Батороев писал(а):
Хотелось бы услышать конец истории от самого bot'a .

Дык, чего говорить - сами уж догадались. Поскольку интерпретация байки от Арнольда получилась вольная, то и ответ можно дать в стиле Задорнова: разумеется наш школьник сообразил, что основанием и высотой могут быть только катеты. :D

 Профиль  
                  
 
 Пародия на ЕГЭ (own)
Сообщение24.07.2007, 09:16 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
Тест. В прямоугольном треугольнике $ABC$ угол $A$ равен $30^o$,угол $B$ равен $60^o$. Определить угол $C$. Варианты ответов:
1) Тупой
2) Острый
3) Прямой
4) Кривой

 Профиль  
                  
 
 
Сообщение16.01.2008, 13:22 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
Сегодня на экзамене студент не мог дать определение производной. Попытка экзаменатора зайти со стороны геометрической интерпретации успехом не увенчалась. Пробует зайти с физической стороны:
- На экзамен как добирались?
- Хорошо.
- А на чём?
- На авто.
- А в салоне автомобиля есть прибор, который некоторую производную показывает...
- Тахометр?

 Профиль  
                  
 
 
Сообщение17.01.2008, 18:23 


23/01/07
3497
Новосибирск
Догадываюсь, какую производную от пройденного им пути Вы затем ему влепили. :D

 Профиль  
                  
 
 
Сообщение28.02.2008, 09:04 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
$\int 1 dx = \frac{1^2}{2}$
- А если подумать?
- Плюс константа
- А-а-тлично ... плюс С=-3.

 Профиль  
                  
 
 
Сообщение08.03.2008, 22:57 


08/03/08
1
Хочется в эту тему предложить вариант некой экзаменации школьника -

У учительницы первого класса возникли трудности с одним из учеников.
Она спросила: «Что с тобой, мальчик?»
Мальчик
ответил: "Я слишком умный для первого класса. Моя сестра в третьем, а я
умнее ее! Думаю, я тоже должен учиться в третьем!»
Для
учительницы это было уже слишком. Она повела мальчика к директору и
объяснила всю ситуацию. Директор подумал и сказал мальчику: «Я проведу
тест, и если ты не сможет ответить на какой-нибудь из вопросов, то
вернешься обратно в первый класс, и будешь вести себя хорошо».

Мальчик согласился.
- Сколько будет 3 x 3?»
- 9
- Сколько будет 6 x 6?
- 36
И
так было с каждым вопросом, на который, по мнению директора,
третьеклассник должен знать ответ. Тогда директор повернулся к
учительнице и сказал: «Думаю, мальчик может пойти в третий класс».
Тогда преподавательница ответила, "У меня тоже есть свои вопросы:
- Что есть у коровы в количестве 4, а у меня только 2?
Мальчик, после паузы ответил:
- Ноги
- А что есть такого в твоих брюках, чего нет в моих?
- Карманы
- Что твердое и розовое - когда входит, и мягкое и липкое - когда выходит?
Директор остолбенел с раскрытыми глазами, и не успел опередить ответ.
- Жвачка!
- Что делает мужчина - стоя, женщина - сидя, а пес - на трех лапах?
Теперь глаза директора на самом деле выпучились широко, но прежде чем он успел, что-то сказать, мальчик ответил:
- Подает руку
- Теперь я задам 7 вопросов из разряда КТО Я? Ты вставляешь в меня свой кол. И я становлюсь мокрой раньше тебя:
- Палатка
- В меня входит палец. Лучший мужчина получает меня первым?
- Обручальное кольцо
- У меня тугой стержень. Мой конец вонзается. В движении я дрожу?
- Стрела
- Какое слово в английском языке начинается с F и заканчивается на K и означает много жара и волнений?
- Firetruck» (Пожарка)
- Какое слово начинается с F и заканчивается на K? Если этого нет, тебе приходится работать руками?
Fork (Вилка)
«Это есть у всех мужчин, у кого-то это длиннее, у кого-то короче. Мужчина дает это своей жене, после свадьбы?
- Фамилия
- У какого органа нет костей, есть мышцы и много вен. Он пульсирует и отвечает за занятия любовью?
- Сердце
Директор с облегчением выдохнул и сказал учительнице:
Отправьте его прямо в университет!!! На последние 7 вопросов я сам ответил неправильно

 !  нг:
Замечание за рекламу. Реклама удалена

 Профиль  
                  
 
 
Сообщение21.03.2008, 11:11 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
В связи с баталиями по поводу простейших уравнений и неравенств в разделе "Помогите решить" вспомнился один случай. В 19забытом году формируют задачи для вступительного экзамена. Варианты в целом уже составлены - идёт их оценка. Для нематематических специальностей вариант показался сложноватым, решили заменить одну задачу на утешительную. После обсуждения разных возможностей предлагается что-то вроде этой:

Найти область определения функции $\sqrt{18-7x-x^2}$
У-п-с, циферки взял наугад, а корни хорошие.

Тех, кто сказал, что эту решат все, быстро урезонили - найдутся абитуриенты, которые не умеют находить корни квадратного уравнения, а среди тех, кто умеет, найдутся те, кто забудет про знак старшего коэффициента.

Старшой помотал головой: - Нет, всё-таки уж очень утешительная даже для ххххххх, и предложил: - давайте добавим ... и множество значений.

Эффекта этой добавки не ожидал никто. Среди тех, кто правильно нашёл область определения, чуть ли не половина абитуров указали {0} в качестве множества значений. :D
За давностью лет забыл, что было у тех, у кого областью определения было объединение двух бесконечных промежутков.

 Профиль  
                  
 
 
Сообщение28.06.2008, 13:52 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск
Проверяю заочников.

1) Вероятность равна 4096. (не так уж и много, если не придираться - всего 4 килобайта)

2) Угол между плоскостями $arccos (-\sqrt{57}/3)$

3) Расстояние от точки до прямой $-\frac{4}{\sqrt 5}}$

4) Найти точки разрыва функции $\frac{(x-1)^2}{x^2-1}$ и определить их тип.
Решение.$$\lim\limits_{x\to 1-0} \frac{(x-1)^2}{x^2-1}=...=0, \lim\limits_{x\to 1+0} \frac{(x-1)^2}{x^2-1}=...=0, $$

$$\lim\limits_{x\to -1-0} \frac{(x-1)^2}{x^2-1}=...=\infty, \lim\limits_{x\to -1+0} \frac{(x-1)^2}{x^2-1}=...=-\infty$$
Ответ: 1

5) Сколько различных четырёхзначных чисел можно составить из цифр 4, 6, 7, 9 с использованием всех четырёх цифр?
Решение. Если бы цифры были 1, 2, 3, 4, то получилось бы $1\cdot2\cdot3\cdot4=24$. Аналогично для цифр 4, 6, 7, 9 получаем $4\cdot6\cdot7\cdot9=1512$

6) $P(\vec{A})=1-P(A)$

 Профиль  
                  
 
 
Сообщение07.07.2008, 17:46 
Заслуженный участник
Аватара пользователя


11/01/06
3823
Свежий перл из вступительных на географический МГУ.
Задание: решить неравенство $\arccos\sqrt{8-14x}\ge\arccos2x$.
Решение:... Разделим обе части неравенства на $\arccos$
$\sqrt{8-14x}\ge2x$...

 Профиль  
                  
 
 
Сообщение07.07.2008, 18:45 
Экс-модератор


17/06/06
5004
:shock: Разве так можно? А если $\mathrm{arccos}=0$?

 Профиль  
                  
 
 
Сообщение07.07.2008, 19:19 
Заслуженный участник
Аватара пользователя


11/01/06
3823
Нельзя, конечно. А ещё надо учесть случай $\arccos<0$, ведь тогда знак неравенства надо менять на обратный. Поэтому я поставил $\mp$.

 Профиль  
                  
 
 
Сообщение07.07.2008, 20:57 
Заслуженный участник


11/05/08
32166
RIP писал(а):
Поэтому я поставил $\mp$.

Щедро.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 922 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 62  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group