2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 62  След.
 
 Сократ?
Сообщение22.07.2007, 08:40 


03/09/05
217
Bulgaria
В соседней рубрике об управление страной постоянными референдумами упомянули Сократа как аргумент. Вот и вспомнил старый анекдот о нем:
Жена Сократа плачет когда он поднымает кубок с ядом.
Он: Почему ты плачеш бедная?
Она: Потому что знаю, что умираеш невинным.
Сократ: А тебе было бы лучше, если я умирал бы виноватым?

 Профиль  
                  
 
 
Сообщение22.07.2007, 10:06 
Заслуженный участник
Аватара пользователя


20/07/05
695
Ярославль
Elementary geometry problem

"Ну тупые они эти американцы, ну тупые."© :lol:

 Профиль  
                  
 
 
Сообщение22.07.2007, 12:04 
Экс-модератор


12/06/05
1595
MSU
Борис Лейкин писал(а):
Ну тупые они эти американцы, ну тупые

И всё же я бы назвал ваш вывод несколько скоропалительным. Пять ответов - это мало.

Для полноты эксперимента не поленитесь, задайте это на каком-нибудь нашем форуме. Я думаю, результаты будут получше, но не идеальны.

 Профиль  
                  
 
 
Сообщение23.07.2007, 09:07 
Заслуженный участник
Аватара пользователя


21/12/05
5934
Новосибирск
Борис Лейкин писал(а):
Elementary geometry problem

"Ну тупые они эти американцы, ну тупые."© :lol:

Не понял - 8 правильных ответов (от американцев?) из 9 это плохой результат?

Что это байка от Арнольда, не знал. Числа выбирал от фонаря, кроме провокационного 30 и верного 24.
А небрежно составленных задач и в наших задачниках немало, в частности и с геометрически нереализуемыми числовыми данными.

Батороев писал(а):
Хотелось бы услышать конец истории от самого bot'a .

Дык, чего говорить - сами уж догадались. Поскольку интерпретация байки от Арнольда получилась вольная, то и ответ можно дать в стиле Задорнова: разумеется наш школьник сообразил, что основанием и высотой могут быть только катеты. :D

 Профиль  
                  
 
 Пародия на ЕГЭ (own)
Сообщение24.07.2007, 09:16 
Заслуженный участник
Аватара пользователя


21/12/05
5934
Новосибирск
Тест. В прямоугольном треугольнике $ABC$ угол $A$ равен $30^o$,угол $B$ равен $60^o$. Определить угол $C$. Варианты ответов:
1) Тупой
2) Острый
3) Прямой
4) Кривой

 Профиль  
                  
 
 
Сообщение16.01.2008, 13:22 
Заслуженный участник
Аватара пользователя


21/12/05
5934
Новосибирск
Сегодня на экзамене студент не мог дать определение производной. Попытка экзаменатора зайти со стороны геометрической интерпретации успехом не увенчалась. Пробует зайти с физической стороны:
- На экзамен как добирались?
- Хорошо.
- А на чём?
- На авто.
- А в салоне автомобиля есть прибор, который некоторую производную показывает...
- Тахометр?

 Профиль  
                  
 
 
Сообщение17.01.2008, 18:23 


23/01/07
3497
Новосибирск
Догадываюсь, какую производную от пройденного им пути Вы затем ему влепили. :D

 Профиль  
                  
 
 
Сообщение28.02.2008, 09:04 
Заслуженный участник
Аватара пользователя


21/12/05
5934
Новосибирск
$\int 1 dx = \frac{1^2}{2}$
- А если подумать?
- Плюс константа
- А-а-тлично ... плюс С=-3.

 Профиль  
                  
 
 
Сообщение08.03.2008, 22:57 


08/03/08
1
Хочется в эту тему предложить вариант некой экзаменации школьника -

У учительницы первого класса возникли трудности с одним из учеников.
Она спросила: «Что с тобой, мальчик?»
Мальчик
ответил: "Я слишком умный для первого класса. Моя сестра в третьем, а я
умнее ее! Думаю, я тоже должен учиться в третьем!»
Для
учительницы это было уже слишком. Она повела мальчика к директору и
объяснила всю ситуацию. Директор подумал и сказал мальчику: «Я проведу
тест, и если ты не сможет ответить на какой-нибудь из вопросов, то
вернешься обратно в первый класс, и будешь вести себя хорошо».

Мальчик согласился.
- Сколько будет 3 x 3?»
- 9
- Сколько будет 6 x 6?
- 36
И
так было с каждым вопросом, на который, по мнению директора,
третьеклассник должен знать ответ. Тогда директор повернулся к
учительнице и сказал: «Думаю, мальчик может пойти в третий класс».
Тогда преподавательница ответила, "У меня тоже есть свои вопросы:
- Что есть у коровы в количестве 4, а у меня только 2?
Мальчик, после паузы ответил:
- Ноги
- А что есть такого в твоих брюках, чего нет в моих?
- Карманы
- Что твердое и розовое - когда входит, и мягкое и липкое - когда выходит?
Директор остолбенел с раскрытыми глазами, и не успел опередить ответ.
- Жвачка!
- Что делает мужчина - стоя, женщина - сидя, а пес - на трех лапах?
Теперь глаза директора на самом деле выпучились широко, но прежде чем он успел, что-то сказать, мальчик ответил:
- Подает руку
- Теперь я задам 7 вопросов из разряда КТО Я? Ты вставляешь в меня свой кол. И я становлюсь мокрой раньше тебя:
- Палатка
- В меня входит палец. Лучший мужчина получает меня первым?
- Обручальное кольцо
- У меня тугой стержень. Мой конец вонзается. В движении я дрожу?
- Стрела
- Какое слово в английском языке начинается с F и заканчивается на K и означает много жара и волнений?
- Firetruck» (Пожарка)
- Какое слово начинается с F и заканчивается на K? Если этого нет, тебе приходится работать руками?
Fork (Вилка)
«Это есть у всех мужчин, у кого-то это длиннее, у кого-то короче. Мужчина дает это своей жене, после свадьбы?
- Фамилия
- У какого органа нет костей, есть мышцы и много вен. Он пульсирует и отвечает за занятия любовью?
- Сердце
Директор с облегчением выдохнул и сказал учительнице:
Отправьте его прямо в университет!!! На последние 7 вопросов я сам ответил неправильно

 !  нг:
Замечание за рекламу. Реклама удалена

 Профиль  
                  
 
 
Сообщение21.03.2008, 11:11 
Заслуженный участник
Аватара пользователя


21/12/05
5934
Новосибирск
В связи с баталиями по поводу простейших уравнений и неравенств в разделе "Помогите решить" вспомнился один случай. В 19забытом году формируют задачи для вступительного экзамена. Варианты в целом уже составлены - идёт их оценка. Для нематематических специальностей вариант показался сложноватым, решили заменить одну задачу на утешительную. После обсуждения разных возможностей предлагается что-то вроде этой:

Найти область определения функции $\sqrt{18-7x-x^2}$
У-п-с, циферки взял наугад, а корни хорошие.

Тех, кто сказал, что эту решат все, быстро урезонили - найдутся абитуриенты, которые не умеют находить корни квадратного уравнения, а среди тех, кто умеет, найдутся те, кто забудет про знак старшего коэффициента.

Старшой помотал головой: - Нет, всё-таки уж очень утешительная даже для ххххххх, и предложил: - давайте добавим ... и множество значений.

Эффекта этой добавки не ожидал никто. Среди тех, кто правильно нашёл область определения, чуть ли не половина абитуров указали {0} в качестве множества значений. :D
За давностью лет забыл, что было у тех, у кого областью определения было объединение двух бесконечных промежутков.

 Профиль  
                  
 
 
Сообщение28.06.2008, 13:52 
Заслуженный участник
Аватара пользователя


21/12/05
5934
Новосибирск
Проверяю заочников.

1) Вероятность равна 4096. (не так уж и много, если не придираться - всего 4 килобайта)

2) Угол между плоскостями $arccos (-\sqrt{57}/3)$

3) Расстояние от точки до прямой $-\frac{4}{\sqrt 5}}$

4) Найти точки разрыва функции $\frac{(x-1)^2}{x^2-1}$ и определить их тип.
Решение.$$\lim\limits_{x\to 1-0} \frac{(x-1)^2}{x^2-1}=...=0, \lim\limits_{x\to 1+0} \frac{(x-1)^2}{x^2-1}=...=0, $$

$$\lim\limits_{x\to -1-0} \frac{(x-1)^2}{x^2-1}=...=\infty, \lim\limits_{x\to -1+0} \frac{(x-1)^2}{x^2-1}=...=-\infty$$
Ответ: 1

5) Сколько различных четырёхзначных чисел можно составить из цифр 4, 6, 7, 9 с использованием всех четырёх цифр?
Решение. Если бы цифры были 1, 2, 3, 4, то получилось бы $1\cdot2\cdot3\cdot4=24$. Аналогично для цифр 4, 6, 7, 9 получаем $4\cdot6\cdot7\cdot9=1512$

6) $P(\vec{A})=1-P(A)$

 Профиль  
                  
 
 
Сообщение07.07.2008, 17:46 
Заслуженный участник
Аватара пользователя


11/01/06
3828
Свежий перл из вступительных на географический МГУ.
Задание: решить неравенство $\arccos\sqrt{8-14x}\ge\arccos2x$.
Решение:... Разделим обе части неравенства на $\arccos$
$\sqrt{8-14x}\ge2x$...

 Профиль  
                  
 
 
Сообщение07.07.2008, 18:45 
Экс-модератор


17/06/06
5004
:shock: Разве так можно? А если $\mathrm{arccos}=0$?

 Профиль  
                  
 
 
Сообщение07.07.2008, 19:19 
Заслуженный участник
Аватара пользователя


11/01/06
3828
Нельзя, конечно. А ещё надо учесть случай $\arccos<0$, ведь тогда знак неравенства надо менять на обратный. Поэтому я поставил $\mp$.

 Профиль  
                  
 
 
Сообщение07.07.2008, 20:57 
Заслуженный участник


11/05/08
32166
RIP писал(а):
Поэтому я поставил $\mp$.

Щедро.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 922 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 62  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DimaM


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group