2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 21:53 
Админ форума
Аватара пользователя


19/03/10
8952
 !  PSP, замечание за избыточное цитирование.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 21:56 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Toucan в сообщении #1031396 писал(а):
 !  PSP, замечание за избыточное цитирование.

Где надо убрать цитирование ?

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 22:05 
Заслуженный участник
Аватара пользователя


28/09/06
10983
PSP в сообщении #1031384 писал(а):
нужно выяснить,что за линии постоянных кривизин есть в 4-х мерном псевдоевклидовом пространстве
Я и в трёхмерном евклидовом пространстве не знаю как выяснить, что это будет за линия в общем случае.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 22:17 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
epros в сообщении #1031403 писал(а):
PSP в сообщении #1031384 писал(а):
нужно выяснить,что за линии постоянных кривизин есть в 4-х мерном псевдоевклидовом пространстве
Я и в трёхмерном евклидовом пространстве не знаю как выяснить, что это будет за линия в общем случае.

В трёхмерном евклидовом пространстве эта проблема решена.
Это обыкновенная винтовая линия.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 23:17 
Заслуженный участник
Аватара пользователя


28/09/06
10983
PSP в сообщении #1031406 писал(а):
Это обыкновенная винтовая линия.
Очевидно, что нет. Тем более, что непонятно, что такое "обыкновенная" винтовая линия. Бывает цилиндрическая спираль с постоянным шагом, бывает коническая спираль с переменным шагом. Наконец, одно в другое может переходить в самых неожиданных точках.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 23:22 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
epros в сообщении #1031411 писал(а):
PSP в сообщении #1031406 писал(а):
Это обыкновенная винтовая линия.
Очевидно, что нет. Тем более, что непонятно, что такое "обыкновенная" винтовая линия. Бывает цилиндрическая спираль с постоянным шагом, бывает коническая спираль с переменным шагом. Наконец, одно в другое может переходить в самых неожиданных точках.

Ошибаетесь.
Обыкновенная винтовая линия-это цилиндрическая спираль с постоянным шагом.Вот она и является самым общим видом линии с постоянными кривизинами в 3-х мерном евклидовом пространстве.Увидите в любом соответствующем учебнике.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 23:25 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
PSP в сообщении #1031412 писал(а):
с постоянными кривизинами

По моему кривизна одна, а вторая характеристика—кручение. Как ни называй ее, Вы правы: это обычная винтовая линия (helix).

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 23:39 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Red_Herring в сообщении #1031413 писал(а):
PSP в сообщении #1031412 писал(а):
с постоянными кривизинами

По моему кривизна одна, а вторая характеристика—кручение. Как ни называй ее, Вы правы: это обычная винтовая линия (helix).

Вообще-то в многомерных пространствах говорят так : первая кривизина - "кривизина",вторая кривизина - "кручение" ,третья кривизина - "третья кривизина " и т.д...
Кстати,для 4-х мерного галилеева пространства эта проблема решена.(не мной,а А.И. Долгаревым)
Дело за 4-х мерным псевдоевклидовым пространством.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение26.06.2015, 23:59 
Заслуженный участник
Аватара пользователя


28/09/06
10983
PSP в сообщении #1031419 писал(а):
Вообще-то в многомерных пространствах говорят так : первая кривизина - "кривизина",вторая кривизина - "кручение" ,третья кривизина - "третья кривизина " и т.д...
Давайте-ка поподробнее для 4-х мерного. Как я понимаю, там будет три равноправных вида "кручения", причём непонятно, как определять какое из них "кручение", а какое -- "четвёртая кривизна".

Кстати, решение для трёхмерного пространства, предполагающее сохранение двух величин: "кривизны" И "кручения", годится только для метрического пространства: В аффинно-связном координатно-независимым способом разделить две компоненты кривизны на собственно "кривизну" и "кручение" не удастся.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение27.06.2015, 00:09 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
epros в сообщении #1031423 писал(а):
PSP в сообщении #1031419 писал(а):
Вообще-то в многомерных пространствах говорят так : первая кривизина - "кривизина",вторая кривизина - "кручение" ,третья кривизина - "третья кривизина " и т.д...
Давайте-ка поподробнее для 4-х мерного. Как я понимаю, там будет три равноправных вида "кручения", причём непонятно, как определять какое из них "кручение", а какое -- "четвёртая кривизна".

Кстати, решение для трёхмерного пространства, предполагающее сохранение двух величин: "кривизны" И "кручения", годится только для метрического пространства: В аффинно-связном координатно-независимым способом разделить две компоненты кривизны на собственно "кривизну" и "кручение" не удастся.

1.Речь только о метрических пространствах.
2.Для 4-х мерного евклидова (псевдоевклидова) пространства -первая кривизина - "кривизина",вторая кривизина - "кручение" ,третья кривизина - "третья кривизина ".
"четвёртая кривизна" - это уже для 5-мерного пространства.
Если Вас эта тема заинтересовала - могу выслать своё досье по этой тематике.Учтите,там информации очень много.Но подробного решения пока нет.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение27.06.2015, 00:24 


10/02/11
6786
PSP в сообщении #1031225 писал(а):
Если задаётся метрика такого пространства,то из неё можно вывести уравнения особых линий - геодезических.
Как я понимаю,задание семейства геодезических так же может задать пространство,как и задание его метрики.Так ?

давайте считать, что каждая гладкая кривая это геодезическая. и какой метрике такие геодезические соответствуют? думаю никакой

PSP в сообщении #1031225 писал(а):
Можно ли понятие кривизин обобщить на неплоские пространства?


никаких противопоказаний нет. если $\gamma(t)$ -- кривая на римановом многообразии и $v_1=\dot\gamma$ -- ее касательный вектор, то $v_{k+1}=\nabla_{v_1}v_k$. Ортогонализацией векторов $v_k$ получаем репер Френе

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение27.06.2015, 00:35 
Заслуженный участник
Аватара пользователя


28/09/06
10983
PSP в сообщении #1031427 писал(а):
1.Речь только о метрических пространствах.
Уже удивительно. Вы же собирались с помощью семейства кривых метрику задавать. А какой смысл её задавать, если она у Вас УЖЕ задана?

PSP в сообщении #1031427 писал(а):
2.Для 4-х мерного псевдоевклидова пространства -первая кривизина - "кривизина",вторая кривизина - "кручение" ,третья кривизина - "третья кривизина ".
"четвёртая кривизна" - это уже для 5-мерного пространства
Это Вы только названия приводите, а я прошу способ определения для каждой из этих величин.

Например, для трёхмерного пространства примерно так:
1) Находим первую производную радиус-вектора по параметру кривой (вектор "скорости") и вторую производную (вектор "ускорения").
2) Проводим ортогонально к кривой "плоскость кручения" (вектор "ускорения" лежит на ней).
3) Длина вектора "ускорения" определяет "изгиб".
4) Угловая скорость вращения вектора "ускорения" в "плоскости кручения" определяет "кручение".

Теперь для четырёхмерного:
1) Аналогично.
2) Это будет не плоскость, а трёхмерная "гиперплоскость кручения".
3) Аналогично.
4) У вектора на трёхмерной гиперплоскости будет ТРИ компоненты угловой скорости вращения. Нужно каким-то образом их определить и обеспечить неизменность всех трёх.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение27.06.2015, 00:43 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
epros в сообщении #1031435 писал(а):
PSP в сообщении #1031427 писал(а):
1.Речь только о метрических пространствах.
Уже удивительно. Вы же собирались с помощью семейства кривых метрику задавать. А какой смысл её задавать, если она у Вас УЖЕ задана?



Я не собирался с помощью семейств кривых метрику задавать.Я спрашивал,можно ли это сделать? То ли это "семейства кривых " - геодезические, то ли это "семейства кривых" - линии постоянных кривизин.И получил однозначный ответ - нельзя.

Идеология определения этих величин похожа.
Подробнее - как раз в том досье,что Вам предлагал.
Причём в 4-м мерном псевдоевклидовом случае это можно сделать разными вариантами.Не определился,каким лучше.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение27.06.2015, 00:59 
Заслуженный участник
Аватара пользователя


28/09/06
10983
Для семейств геодезических -- ответ "нельзя". А для семейств кривых постоянной кривизны -- вопрос всё ещё выглядит недостаточно понятным. Даже не потому, что в неметрическом пространстве не получится определить "кривую постоянной кривизны". Мне, например, так и не стало понятным, даже в случае метрического пространства речь о каком семействе идёт. Скажем, в трёхмерном пространстве -- это цилиндрические спирали всевозможных радиусов и шагов, проведённые во всевозможных направлениях из всевозможных точек? Т.е. мы проводим множество таких спиралей, потом забываем о том, что у нас есть метрика, и пытаемся эту метрику найти?

А кто его знает, может быть оно и возможно... Только какая-то уж очень изощрённая задача.

 Профиль  
                  
 
 Re: Метрика и особые линии.
Сообщение27.06.2015, 01:08 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
epros в сообщении #1031441 писал(а):
Для семейств геодезических -- ответ "нельзя". А для семейств кривых постоянной кривизны -- вопрос всё ещё выглядит недостаточно понятным. Даже не потому, что в неметрическом пространстве не получится определить "кривую постоянной кривизны". Мне, например, так и не стало понятным, даже в случае метрического пространства речь о каком семействе идёт. Скажем, в трёхмерном пространстве -- это цилиндрические спирали всевозможных радиусов и шагов, проведённые во всевозможных направлениях из всевозможных точек? Т.е. мы проводим множество таких спиралей, потом забываем о том, что у нас есть метрика, и пытаемся эту метрику найти?

А кто его знает, может быть оно и возможно... Только какая-то уж очень изощрённая задача.

Эта "уж очень изощрённая задача" мною и не ставится.Меня устроит ответ "нельзя" для этой "уж очень изощрённой" задачи.

На первых шагах задача попроще :
Каков общий вид линии постоянных кривизин в 4-хмерном псевдоевклидовом пространстве?
Ответ,естественно,будет в форме уравнений в параметрическом виде..(частным случаем,естественно,будет и обыкновенная винтовая линия).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dgwuqtj, Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group