Если задаётся метрика такого пространства,то из неё можно вывести уравнения особых линий - геодезических.
Я думаю, во избежание путаницы с особенностями (сингулярностями), лучше избегать словосочетания "особые линии".
Как я понимаю,задание семейства геодезических так же может задать пространство,как и задание его метрики.Так ?
Или я ошибаюсь?
Не так. Задание семейства геодезических (совместимого с какой-то римановой метрикой) несёт не больше информации, чем задание аффинной связности на гладком многообразии. При этом, метрика ещё не определена.
1.В плоских римановых и псевдоримановых пространствах можно задать понятия кривизин (типа кривизины плоской линии и кручения пространственной линии в евклидовых пространствах..). Можно ли понятие кривизин обобщить на неплоские пространства?
Можно: внешняя кривизна подмногообразия.
2.Может ли задание семейства линий с постоянными кривизинами (в случае евклидова пространства это прямые,окружности и обыкновенные винтовые линии..) считать равносильным заданию метрики этого пространства ?
Нет, по тем же причинам, что и в первом (непронумерованном) вопросе.
Отсюда возникают следующие вопросы :
1. Тогда "во избежание путаницы с особенностями (сингулярностями) " удобно ли ввести термин :"характерные /определяющие/ линии" ? Или как то выразить по другому ?
2.Можно ли утверждать, что "задание семейства геодезических (совместимого с какой-то римановой метрикой)" несёт столько же информации ,что и "задание семейства линий с
постоянными кривизинами (в случае евклидова пространства это прямые,окружности и обыкновенные винтовые линии..) (совместимого с какой-то римановой метрикой)" ?
3.Может ли понятие "внешняя кривизна подмногообразия " в случае плоского пространства привести к понятию "линий с
постоянными кривизинами " ?
4.Если на вопрос 3. ответ "да",то понятие "внешняя кривизна подмногообразия " в случае НЕплоского пространства может ли привести к аналогу понятий "линий с
постоянными кривизинами " ?