Вся Ваша критика апеллирует к стандартным смыслам. Но моя аксиоматика не сводима в принципе к стандартному синтаксису.
Значит сделайте это явно: замените стандартные термины на нестандартные, чтобы не возникало таких проблем сразу (для ясности можно использовать термины "абырвалг", "сепулька", "крокозябра", "бутявка").
Никто никогда не вводил переменную двусимвольно/двузначно.
Вот Вы сейчас слово "переменная" в каком смысле употребляете: в стандартном или своём? Если в стандартном, какое это отношение имеет к Вашей аксиоматике, если у Вас там все нестандартно? А если стандартно, так сформулируйте понятнее.
Каждое своё замечание Вы завершаете предложением "переопределяйте понятия или доказывайте утверждение". О чём это Вы? В заглавном посте у меня только аксиомы. Кто их доказывает? Ещё теории нет, а Вы уже требуете доказывать непротиворечивость аксиоматики.
Вы мои замечания читали? Я повторюсь:
Deggial писал(а):
Аксиоматика Ваша явно вводится в каком-то контексте известных понятий и определений (иначе из неё вообще ничего не следует). Если брать обычный контекст, то из аксиомы 3 сразу получаем бред, пустую теорию. Значит нужно описать контекст или дополнить/уточнить/исправить/выкинуть Вашу аксиоматику.
Дополнение: если у Вас все термины используются в нестандартном смысле, то у Вас получается Ваши аксиомы в пустоте: они не связаны никак с остальной математикой, только погружены в исчисление предикатов. Я считаю, что из такой теории ничего не выводимо, в том числе и решение кубического уравнения. Неочевидно даже, что теория непротиворечива. Поэтому, чтобы был хоть какой-то смысле, надо показать содержательность теории: что из неё следует, насколько она сильна, как может быть связана с другими теориями и т.п.
Я показываю непротиворечивость аксиом, приводя решения уравнений, которые считаю нетривиальными, и которые получены благодаря выбранной аксиоматике.
Почитайте, что такое непротиворечивая теория и как это обосновывается. Почитайте, что такое противоречивая теория (в частности, вспомните, что из лжи следует всё, что угодно).
В качестве подтверждения правильности решения привожу код, который можно скопировать в свою CAS, чтоб убедиться, что формулы работают. Невозможно заставить столь тяжёлые формулы работать "простым переименованием терминов".
Даже если это верно, это неинтересно. Посудите сами, если я напишу текст типа:
"Аксиомы:
1) Абырвалг - это сепулька
2) Любая сепулька раскладывается в счётное множество бутявок.
Отсюда элементарно находятся все решения задачи о 8 ферзях: %здесь идёт список известных решений%."
и допишу "Вы элементарно можете проверить, что это все решения", Вы мне поверите? И здесь аналогично.
Доказательство должно следовать из Ваших аксиом.
-- 15.06.2015, 09:40 --Стандартные многозначные функции вводятся совсем по другому поводу. Когда, допустим, одному значению аргумента соответствуют два значения функции. У меня речь о другом. Все переменные в таком нестандартном анализе выглядят как сложный объект - два состояния, начальное и конечное, и изменение между этими состояниями. Функциями такие переменные становятся только в виде изменения между состояниями. Состояния (мгновенные снимки функции) - всегда не функции, и в случае производных функций их состояния - соответствующие коэффициенты в первообразной функции. Но коэффициенты - не функции, а всегда состояния соответствующих функций.
Говоря о "значности" можно ещё так сказать в контексте моего изложения. Каждому значению состояния аргумента соответствует одно значение состояния функции, и плюс по одному значению состояний всех производных функций. Но поскольку значение состояния и состояние - это одно и тоже, то можно слово "значение" выкинуть из изложения, т.к. смысл останется тем же. Каждому состоянию аргумента соответствует одно состояние функции, и плюс по одному состоянию всех производных функций. Соответственно: каждому изменению аргумента (между его двумя состояниями) соответствует одно изменение функции (между её двумя состояниями), и плюс по одному изменению всех производных функций (между их соответствующими двумя состояниями). В этом смысле у меня речь только об "однозначности" всех соответствий. Стандартные многозначные функции тут ни причём. Два состояния переменной введены в её описание по другим причинам. Чтоб получить то, ради чего всё затевалось - единую взаимосвязанную картину изменений всех производных функций вместе с изменением аргумента и изменением функции. Единую картину, в которой видно то, что в стандартном анализе не видно вообще, потому что нет отличий между состояниями и изменениями. В частности, в стандартном анализе не видны дополнительные константы в нелинейных функциях.
Вот этот весь текст, если он имеет существенное отношение к Вашей теме - пишите его в тему. Иначе он останется тут. Анализировать его здесь я не буду.