2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Числовые значения компонент тензора Римана (метрика Керра)
Сообщение07.05.2015, 18:22 


07/05/15
7
Здравствуйте! Подскажите, пожалуйста, правильно ли так делать чтоб получить численные значения компонент тензора Римана?
Я взяла из 2-ого тома Чандрасекара "Математическая теория черных дыр" формулы для ненулевых компонент тензора Римана (случай метрики Керра)
и напрямую подставляла значения
например, $c=3\cdot 10^{8}$, $G=6.67\cdot 10^{-11}$, $M=1.98\cdot 10^{30}$, $a=0.61$, $\theta =\frac{2\pi }{3}$
$r=\sqrt{-a^{2}+G^{2}\frac{M^{2}}{c^{4}}}+G\frac{M}{c^{2}}$ это равенство, определяющее гравитационный радиус
также из Чандрасекара взяла выражения для: $\Delta =r^{2}-\frac{2GMr}{c^{2}}+\frac{a^{2}}{c^{2}}$,
$\rho =\sqrt{r^{2}+a^{2}\frac{\cos^{2}\theta }{c^{2}}}$,
$\Sigma =\sqrt{\left(r^{2}+a^{2} \right)^{2}-a^{2}\delta\Delta }$,
$\delta =\sin^{2}\theta$
почему- то для некоторых компонент получаются значения с мнимой единицей
например:
$R_{1213}=-\left(aM\frac{\cos \theta }{\rho ^{6}}\right)\left(3r^{2}-a^{2}\cos^{2}\theta \right)\left(3a\frac{\Delta ^{\frac{1}{2}}}{\Sigma ^{2}} \right)\left(r^{2}+a^{2} \right)\sin\theta$


если все подставить, получается значение $6.4178933073466435i\cdot 10^{9}$

получается мнимая кривизна что ли???
но ведь этого не может быть

может, есть какие-то хитрости в вычислении или я что-то важное упустила.

 Профиль  
                  
 
 Posted automatically
Сообщение07.05.2015, 18:30 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (Ф)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- следует хоть немного тщательнее относиться к соблюдению правил пунктуации.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение09.05.2015, 13:56 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (Ф)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение09.05.2015, 14:43 
Заслуженный участник


25/12/11
750
Во-первых, я надеюсь, что вы понимаете, что таким образом вы считаете кривизну не абы где, а именно на горизонте.

Если вы посмотрите внимательно на ваши формулы, вы поймете, что мнимая единица может появиться ровно в одном месте - в $\Delta^\frac{1}{2}$. Значит нужно понять как так получилось, что $\Delta$ оказалась отрицательной.
Проблему найти легко. Вы работаете в системе единиц, в которой $c$ является размерной величиной, а значит исходя из формулы
$\Delta =r^{2}-\frac{2GMr}{c^{2}}+\frac{a^{2}}{c^{2}}$
$a$ должно быть другой размерности в сравнении с $r$ и $\frac{2GM}{c^{2}}$. В то же время в формуле для гравитационного радиуса
$r=\sqrt{-a^{2}+G^{2}\frac{M^{2}}{c^{4}}}+G\frac{M}{c^{2}}$
их размерности совпадают. Значит в зависимости от определения $a$, которое вам больше нравится, одна из этих формул является неверной. Т.е. если взять $a=\frac{J}{Mc}$, то на самом деле
$\Delta =r^{2}-\frac{2GMr}{c^{2}}+a^2$

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение12.05.2015, 13:27 


07/05/15
7
Здравствуйте.
про горизонт - ,конечно, понимаю. мне на нем и надо посчитать

большое спасибо за указание ошибки. я ее исправила
только теперь получается так:
если $a=0.01$, то $\Delta =1,699\cdot 10^{-10}$
соответственно, если брать корень из $\Delta$, получается нормальное значение без мнимой единицы
но вот, если $a=0.81$, тогда $\Delta =-1,186\cdot 10^{-9}$
и тогда корень из $\Delta$ снова становится с мнимой единицей
(считала по исправленной формуле: $\Delta =r^{2}-\frac{2GMr}{c^{2}}+a^{2}$)

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение12.05.2015, 13:56 
Заслуженный участник
Аватара пользователя


01/09/13
4676
maugly в сообщении #1013832 писал(а):
только теперь получается так

На "горизонте"?? А почему у Вас там $\Delta$ вообще отлична от 0?

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение12.05.2015, 16:20 


07/05/15
7
вот и я не понимаю.
выражение для гравитационного радиуса получается с помощью приравнивания $\Delta$ нулю и выбора положительного значения. проделала вычисления самостоятельно.
получила выражение $r_{g}=\frac{GM}{c^{2}}+\sqrt{\frac{G^{2}M^{2}}{c^{4}}-a^{2}}$
(по размерности все перепроверила - все хорошо, получаются метры)
но при подставлении $r_{g}$ в $\Delta$ и всех указанных в верхнем посту числовых значениях
при $a=0.81$ получается $\Delta =-1.186\cdot 10^{-9}$
это я в маткаде формулы пишу
может, из-за того, что разброс степеней большой и подстановки туда-сюда накапливается ошибка вычислений и поэтому такое странное значение для $\Delta$ получается....

попробовала убрать выражение для $\Delta$, просто написав $\Delta =0$ и оставив выражение для гравитационного радиуса
получилось, те компоненты, которые были с мнимыми единицами, обратились в нуль

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение12.05.2015, 17:21 
Заслуженный участник
Аватара пользователя


01/09/13
4676
maugly в сообщении #1013890 писал(а):
накапливается ошибка вычислений

Великовата ошибка всё же (хотя похоже на неё).
Возможно было бы лучше сразу перейти к "геометрическим единицам" ($G=c=1$) - масса Солнца, например, будет 1477 метров.
(кстати, а чего у Вас $a$ такое маленькое?)

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение12.05.2015, 22:03 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Кстати. В метрике Керра $\Delta$ входит в $g_{ij}$ и $g^{ij}$ в целой степени. $R_{ijkl}$ выражается через компоненты метрического тензора и их производные. Откуда вообще в $R_{1213}$ может появиться $\Delta^{\frac 1 2}$ ?

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение13.05.2015, 12:06 


07/05/15
7
смотрите формулу для $R_{1213}$ 2-ой том Чандрасекара "Математическая теория черных дыр". Раздел: Метрика Керра. (глава 6, параграф 54)
запись:
$$-R_{3002}=R_{1213}=-\left(\frac{aM\cos\theta }{\rho ^{6}} \right)\left(3r^{2}-a^{2}\cos^{2}\theta \right)\left(\frac{3a\Delta ^{\frac{1}{2}}}{\Sigma ^{2}} \right)\left(r^{2}+a^{2} \right)\sin\theta$$

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение13.05.2015, 12:24 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Удивительная тема. Я долго смотреть на неё не могу. Хочется энергичные слова говорить...

Нет, в самом деле. Какой антураж! Здесь можно встретить такие фамилии как Риман, такие страшные слова как тензор, а по сути всё обсуждение сводится к проблемам подстановки пары чисел в аналитически заданную функцию. :facepalm:

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение13.05.2015, 15:57 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
maugly
Я верю, что в книге так написано, но вопрос остаётся.

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение13.05.2015, 18:20 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Понял. $R_{1213}$ — это не $R_{r\theta r\varphi}$ (которая равна нулю), а компонента в специальным образом выбранной тетраде.

 Профиль  
                  
 
 Re: Числовые значения компонент тензора Римана (метрика Керра)
Сообщение18.05.2015, 11:43 


07/05/15
7
спасибо тем, кто, не кичась своими знаниями, задавал вопросы. благодаря им я нашла свою ошибку и обратила внимание на то, что сразу не заметила.
еще раз: СПАСИБО

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group