2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки



Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Разбиение сферы на многоугольники
Сообщение13.02.2014, 19:20 
Заслуженный участник
Аватара пользователя


18/05/06
13160
с Территории
Solist в сообщении #825935 писал(а):
мне понравилось предположение с функцией от сферических координат, которая бы задавала центры участков, 12 из которых пенты - вершины икосаэдра...вот найти бы эту функцию...
Вам её уже сказали (несколько человек, по частям). Ещё раз, всё вместе: возьмите икосаэдр. Разбейте каждую грань на 4, 9, 16 или сколько заблагорассудится маленьких и уже не совсем равных сферических треугольников. Теперь возьмите от этого двойственную фигуру.

-- менее минуты назад --

Фуллерены-то разные бывают, не только 60.

 Профиль  
                  
 
 Re: Разбиение сферы на многоугольники
Сообщение15.02.2014, 10:41 
Заслуженный участник


14/01/11
1638
ИСН в сообщении #825971 писал(а):
Фуллерены-то разные бывают, не только 60.

Действительно, какие же они бывают? Пусть мы хотим построить выпуклый многогранник $P$ из 5- и 6-угольников. Рассмотрим многогранник $P'$, двойственный к нему. Пусть он имеет $V$ вершин, $E$ рёбер и $F$ граней. Поскольку он тоже будет выпуклым, для него справедливо $V+F-E=2$. Его гранями будут треугольники, так что $E=\frac{3F}{2}$, отсюда $F=2V-4$, $E=3V-6$.
Поскольку гранями $P$ являются 5- и 6-угольники, в каждой вершине многогранника $P'$ сходится 5 или 6 рёбер. Обозначим количество вершин, в которых сходится 5 рёбер, $V_5$, а количество вершин, в которых сходится 6 рёбер, - $V_6$. Тогда $V=V_5+V_6$,
$E=\frac{1}{2}(5V_5+6V_6)=3(V_5+V_6)-6$, откуда получаем: $V_5=12$.
Иными словами, что бы мы ни делали, у нас получится автомат Калашниковаикосаэдр. В каждой из его 12 вершин будет сходиться по 5 треугольников. Очевидно, именно эти треугольники будут отличаться от равносторонних наиболее сильно и при бесконечном увеличении мелкости разбиения их углы будут стремиться к $\frac{2\pi}{5},\;\frac{3\pi}{10},\;\frac{3\pi}{10}$. Во всех остальных вершинах треугольники разбиения будут сходиться по 6 и будут всё более походить на равносторонние при движении от углов граней икосаэдра к их центрам. Это означает, что при таких условиях радикально улучшить предложенные ранее методы разбиения не удастся.

 Профиль  
                  
 
 Re: Разбиение сферы на многоугольники
Сообщение24.10.2015, 22:20 


24/10/15
1
Я делю так:
http://imglink.ru/show-image.php?id=28b ... ba60d1ba20
http://imglink.ru/show-image.php?id=cc8 ... 25a4d2c767

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group