2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки





Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5
 
 Re: "Почти целые" числа
Сообщение25.11.2016, 23:07 
Аватара пользователя


14/08/12
264
$\frac{(3+e^{-2})^2+\pi^2}{(3+e^{-2})\pi}=2.000003975...$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение25.11.2016, 23:57 
Заслуженный участник
Аватара пользователя


09/09/14
4411
Alex_J
Ну можно продолжить:
$$
\frac{\left(\frac{(3+e^{-2})^2+\pi^2}{(3+e^{-2})\pi}\right)}2+\frac2{\left(\frac{(3+e^{-2})^2+\pi^2}{(3+e^{-2})\pi}\right)}\approx 2.000000000004
$$А смысл?

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение01.10.2017, 14:31 


16/09/17
11
$\pi\approx\frac{11}{7}+\sqrt{(\frac{11}{7})^2-\frac{100}{25173}}$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение01.10.2017, 14:38 
Заслуженный участник
Аватара пользователя


27/04/09
21085
Уфа
$\frac{314159265359}{100000000000}$ приблизительно равно числу $\pi$. И.

А у вас, кстати, точность ещё хуже, чем у приближения $\pi\approx3$. (UPD: формула исправлена, и точность весьма улучшилась, да.)

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение22.11.2017, 16:38 
Заслуженный участник
Аватара пользователя


09/09/14
4411
Красивым приближением поделился со мной kthxbye:
$$\lim\limits_{n\to\infty}^{} i^i\uparrow\uparrow n\approx\frac{8}{20-\pi}$$Это тетрация с мнимыми единицами. Я поискал в сети, было ли такое известно ранее, но искать непросто -- тетрации с мнимой единицей посвящены целые форумы (англоязычные), есть красивые картинки сходимости, но слишком много информации, чтобы найти что-то конкретное.

Относительная точность приближения здесь примерно равна $6.8\cdot 10^{-7}$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 65 ]  На страницу Пред.  1, 2, 3, 4, 5

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group