2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Задача по планиметрии
Сообщение08.02.2015, 10:20 
Биссектриса угла $A$ треугольника $ABC$ перпендикулярна прямой, проходящей через точку пересечения медиан $M$ и точку пересечения высот $H$. Найти угол $A$.

Даже не знаю с чего подступиться. Видна только банальность, что треугольники, на которые делит биссектриса делит треугольник, отсекаемый от треугольника $ABC$ прямой $MH$, равны. То, что на $MH$ лежит точка пересечения серединных перпендикуляров, тоже ни на что не наталкивает.

 
 
 
 Posted automatically
Сообщение08.02.2015, 14:29 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

AVV
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено

 
 
 
 Re: Задача по планиметрии
Сообщение08.02.2015, 15:12 
Аватара пользователя
Можно посмотреть, каким может быть угол $A$. Острым, прямым, тупым? Замеченное Вами свойство биссектрисы позволяет вообще отказаться от неё. Достаточно, чтобы озвученная прямая отсекала на сторонах (продолжениях) равные отрезки от вершина $A$. Случай равностороннего треугольника можно, конечно, и притянуть за ухо.
На первый взгляд задача для координат хороша. Треугольник $(0,0),(6,0),(6a,6b)$. Точки пересечения медиан и высот получаются легко. А потом можно пустить вектор из вершины и посмотреть. Вот только вдруг появятся уравнения больше второй степени :?:

Можно ещё частным случаем поиграть, когда треугольник прямоугольный, но биссектриса исходит не из прямого угла. Ну тут уж устно :-)

 
 
 
 Re: Задача по планиметрии
Сообщение09.02.2015, 00:16 
Для прямоугольного треугольника действительно устно, за счёт того, что $MH$ пересекает треугольник в удачной точке -- вершине. В общем же случае, непонятно, чем точки пересечения характеризуются.

Этот случай показывает, что угол $A$ может быть острым и не может быть прямым.

Координаты выглядят естественно, да. Опасение насчёт степени уравнений разделяю -- $a$ и $b$ явно в степени выше второй будут. Ну, и, даже если бы всё хорошо получалось бы, явно должно быть более элегантное геометрическое решение.

 
 
 
 Re: Задача по планиметрии
Сообщение09.02.2015, 07:27 
Аватара пользователя
С помощью координат видно, что для $\angle A=60^{\circle}$ биссектриса перпендикулярна прямой в любом треугольнике. Наверное, можно найти какое-то соотношение между тангенсами соответствующих углов? Хотя, Вы правы, должно быть геометрическое решение.

 
 
 
 Re: Задача по планиметрии
Сообщение09.02.2015, 14:46 
Удобней исходить из описанной окружности (центр $O$). Диаметр этой окружности будет прямой Эйлера треугольника $ABC$. Хорда $AE$, перпендикулярная этому диаметру, будет биссектрисой треугольника $ABC$. Сторона $BC$ будет хордой, перпендикулярной радиусу $OE$ и проходящей через его середину.

 
 
 
 Re: Задача по планиметрии
Сообщение10.02.2015, 09:12 
Отличная наводка! Действительно, нетрудно показать, что биссектриса угла и серединный перпендикуляр противоположной стороны проходят через одну и ту же точку на описанной окружности. Это для всякого треугольника. Теперь нужно как-то элегантно понять, чем выделен именно этот диаметр.

С учётом вышеказанного, задача сводится в следующей, кажущейся более простой. А именно. Вокруг треугольника $ABC$ описана окружность. Серединный перпендикуляр к $BC$, направленный "от треугольнка" пересекает окружность в точке $E$. Хорда $AE$ перпендикулярна прямой, проходящей через центр окружности и точку пересечения высот.

Расстояния от точки пересечения высот $H$ до $AE$ такое же как и от $O$, так как $OE$ параллельна $AH$ и $AE$ перпендикулярна $OH$ (вот элегантная привязка диаметра и появилась). Также $AH = HE = R$, где $R$ -- радиус описанной окружности.

Кажется, что осталось совсем чуть-чуть, но финальный шаг сделать не получается.

 
 
 
 Re: Задача по планиметрии
Сообщение10.02.2015, 10:25 
Аватара пользователя
AVV в сообщении #976174 писал(а):
С учётом вышеказанного, задача сводится в следующей, кажущейся более простой. А именно. Вокруг треугольника $ABC$ описана окружность. Серединный перпендикуляр к $BC$, направленный "от треугольнка" пересекает окружность в точке $E$. Хорда $AE$ перпендикулярна прямой, проходящей через центр окружности и точку пересечения высот.
... и точку пересечения медиан

 
 
 
 Re: Задача по планиметрии
Сообщение10.02.2015, 10:34 
TOTAL в сообщении #976190 писал(а):
... и точку пересечения медиан

Это да. Подразумевалось, что про прямую Эйлера мы помним, и, потому, явно не говорил.

Или это подсказка, что посмотреть в сторону медиан небесполезно? Я в той стороне чего-то хорошего не увидел. Для медиан не вижу естественной связи с описанной окружностью, в отличие от серединных перпендикуляров. И хорошей связи с последними, в отличие от высот. Т.е. связь-то очевидная есть, но она углы не уважает.

 
 
 
 Re: Задача по планиметрии
Сообщение10.02.2015, 10:39 
Аватара пользователя
AVV в сообщении #976192 писал(а):
Или это подсказка, что посмотреть в сторону медиан небесполезно?
Это в условии сказано про медианы.

 
 
 
 Re: Задача по планиметрии
Сообщение10.02.2015, 10:52 
TOTAL в сообщении #976195 писал(а):
Это в условии сказано про медианы.

Так приведена же эквивалентная формулировка, ввиду того, что точки пересечения медиан, высот и серединных перпендикуляров всегда лежат на одной прямой.

 
 
 
 Re: Задача по планиметрии
Сообщение10.02.2015, 15:22 
Построим равносторонний треугольник. Очевидно, он является одним из решений. Затем, сдвигая один угол треугльника вдоль стороны, найти закон передвижения точек пересечений высот и медиан, т.е. положение соединяющей их прямой.

 
 
 
 Re: Задача по планиметрии
Сообщение11.02.2015, 07:02 
Аватара пользователя
Skeptic в сообщении #976285 писал(а):
Построим равносторонний треугольник. Очевидно, он является одним из решений.
Как в равностороннем треугольнике расположена прямая, проходящая через точку пересечения медиан и точку пересечения высот?

 
 
 
 Re: Задача по планиметрии
Сообщение11.02.2015, 10:40 
Skeptic в сообщении #976285 писал(а):
Построим равносторонний треугольник. Очевидно, он является одним из решений. Затем, сдвигая один угол треугльника вдоль стороны, найти закон передвижения точек пересечений высот и медиан, т.е. положение соединяющей их прямой.

Т.к. ответ в задаче предполагается в единственном числе, то не замудряясь законом передвижения точек, можно все сдвигать, не меняя угол $A=60^\circ$. :-)

 
 
 
 Re: Задача по планиметрии
Сообщение11.02.2015, 14:16 
Skeptic в сообщении #976285 писал(а):
Построим равносторонний треугольник. Очевидно, он является одним из решений. Затем, сдвигая один угол треугльника вдоль стороны, найти закон передвижения точек пересечений высот и медиан, т.е. положение соединяющей их прямой.

Хмм, а что-то в этом есть. Как было замечено выше, равносторонний треугольник вырожден. Если начинать не с равностороннего треугольника, а с прямоугольного, и если предположить, что условия задачи реализуются для любого треугольника, то ясно, что угол $A$ равен 60 градусам, так как его не двигаем.

Это тривиальность. Но она позволяет сделать предположение, что в треугольнике, удовлетворяющей условия задачи, прямая Эйлера пересекает стороны под уголом 60 градусов. Т.е., в остроугольном треугольнике она отсекает от него равносторонний треугольник.

Также, раз при таком движении сторона смежная с $A$ остаётся на месте, то то на месте остаётся и точка пересечения серединного перпендикуляра к ней, высоты из другой точки стороны, и биссектрисы $A$. Т.е. нетривиальность в том, что они вообще в одной точке пересекаются.

Сказанное выше работает, если угол $A$ 60 градусов. Может как-то показать, что невыполнение последнего противоречит условию?

 
 
 [ Сообщений: 34 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group