2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 02:02 
Аватара пользователя
Собственно, чему эта мощность равна ?
Понятное дело что сверху можно его оценить $2^{R  \times R} $, но вот чем оценить снизу? Я вот пытаюсь подобрать какой-нибудь класс фигур который можно биективно отобразить в $2^{R } $ или в $2^{R \times R} $ или $2^{R_{+}} $, но по-моему такого класса не существует, ведь подмножества могут быть разрывные, что это тогда за фигуры получатся ? Или может как-то иначе доказательство строить? :?

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 02:05 
Аватара пользователя
А что такое "фигура"? Если это любое множество, то ответ будет тот, который Вы указали, но я думаю что под фигурой Вы понимаете нечто не столь общее. Определение требуется.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 02:12 
Аватара пользователя
Red_Herring
Я предполагаю, что фигура понимается как множество точек на плоскости, которое ограниченно конечным числом линий.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 02:20 
Аватара пользователя
Прекрасно, дайте определение линии.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 03:03 
Ни коим образом не претендуя на помощь великому Red_Herring, предлагаю ТС решить задачу о мощности множества непрерывных функций, и определить понятие линии через понятие непрерывной функции.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 03:08 
Аватара пользователя
Red_Herring
В этой задаче, наверно это то, что под линией понимают в элементарной геометрии: прямая, кривая, окружность, отрезок и т.д.
Вы хотите сказать, что без точного определения объекта этого множества не получится посчитать его мощность ? Может тогда попытаться конкретизировать задачу? Допустим, то что это подмножество булеана $R \times R $ понятно, если еще теперь показать что его мощность превосходит континуум и остановится на такой оценке, например. Но как тогда построить такое доказательство?

-- 10.01.2015, 03:14 --

Yhn112
Очень это радикально, мне кажется, мы тогда получим что множество всех фигур континуум, это как-то странно.
Да и обделим огромное множество кривых которые не являются функциями.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 03:26 
Не смею мешать Вам доказывать, что кривых на плоскости не то чтобы сильно больше чем непрерывных функций. И привыкать к странностям, да.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 03:28 
Аватара пользователя
Непрерывная линия локально является графиком непрерывной функции.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 04:20 
Аватара пользователя
demolishka в сообщении #959403 писал(а):
Непрерывная линия локально является графиком непрерывной функции.


Прямо уж любая непрерывная кривая?

На самом деле это не важно. Любая непрерывная кривая на плоскости — это пара непрерывных функций $(x(t),y(t))$.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 14:49 
Аватара пользователя
Безусловно, при всех более или менее разумных определених "фигура" (ну например замкнутое множество, или даже борелевское множество) результат будет одним и тем же (но уже если под фигурой понимать "измеримое по Лебегу" ответ будет совсем другим). Но в любом случае задачу надо формулировать четко, и именно это была моя претензия к ТС.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 15:35 
g______d в сообщении #959406 писал(а):
demolishka в сообщении #959403 писал(а):
Непрерывная линия локально является графиком непрерывной функции.


Прямо уж любая непрерывная кривая?



Так вроде да. Теорема Уитни и теорема о неявной функции.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 15:44 
Не каждая кривая локально монотонна.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 17:33 
Terraniux в сообщении #959501 писал(а):
Так вроде да. Теорема Уитни и теорема о неявной функции.

Даже если бы речь шла о регулярных кривых, то при чём тут теорема Уитни (хотя может я не на ту теорему подумал)? Так или иначе, это была бы просто теорема о неявной функции.

А про просто непрерывные - Пеано с Вами не согласился бы наверно).

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 18:01 
VanD в сообщении #959537 писал(а):
Terraniux в сообщении #959501 писал(а):
Так вроде да. Теорема Уитни и теорема о неявной функции.

Даже если бы речь шла о регулярных кривых, то при чём тут теорема Уитни (хотя может я не на ту теорему подумал)? Так или иначе, это была бы просто теорема о неявной функции.

А про просто непрерывные - Пеано с Вами не согласился бы наверно).

(Оффтоп)

Теорема о том, что всякое замкнутое множество в $\mathbb{R}^n$ является поверхностью уровня некоторой функции, притом бесконечно дифференцируемой.

 
 
 
 Re: Мощность множества всех фигур на плоскости
Сообщение10.01.2015, 18:33 

(Оффтоп)

Но ведь быть множеством уровня гладкой функции ещё не значит локально быть графиком какой-нибудь гладкой функции?

 
 
 [ Сообщений: 36 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group