2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10  След.
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 19:55 
Аватара пользователя
druggist в сообщении #919588 писал(а):
Смутно помню, была задача, кажется в том же Галицком - частица в потенциале из двух одинаковых дельта-ям, при определенном расстоянии между ямами возникает расщепление уровня


Задача о расщеплении уровня для двух зеркально симметричных ям (не видел работ с большим количеством ям) очень популярная задача и расщепление возникает всегда (вопрос лишь о величине расщепления): просто потому, что собственные функции не локализованы в пространстве (хотя и убывают очень сильно в классически запрещенной зоне).

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 20:08 
Red_Herring в сообщении #919661 писал(а):
(не видел работ с большим количеством ям)
Есть с бесконечным количеством - вариации на тему Кронига-Пени.

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 20:20 
Red_Herring в сообщении #919661 писал(а):
расщепление возникает всегда (вопрос лишь о величине расщепления):

Точно помню, при определенных параметрах не возникало расщепления

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 20:40 
Аватара пользователя
druggist в сообщении #919681 писал(а):
Точно помню, при определенных параметрах не возникало расщепления

И что, основное состояние в одномерном потенциале было вырождено?

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 20:57 
amon в сообщении #919691 писал(а):
И что, основное состояние в одномерном потенциале было вырождено?

Очень смутные воспоминания, помню, там всего два параметра, коэффициент при дельта функции и расстояние между пиками, в зависимости от отношения имеем несколько случаев, с двумя уровнями, ни одного уровня и, (не уверен), один. Решать надо уравнение

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 21:35 
Аватара пользователя
Red_Herring в сообщении #919661 писал(а):
Задача о расщеплении уровня для двух зеркально симметричных ям (не видел работ с большим количеством ям)

В принципе, "на пальцах" должно быть расщепление для любого количества ям $n$ на $2^{n-1}$ уровней: просто возьмите решение для каждой ямы, взятой по отдельности, с "плюсом" или с "минусом". Возможно, для каких-то симметричных конфигураций возникнет вырождение. Например, для 4 ям должны быть одинаковые энергии у (−+−−) и (−−+−). Не исключено, что задача полезная для химии (орбитали в молекулах). Но там трудно ожидать специально подогнанных "хороших" потенциалов, скорее всего, результаты будут "общего положения".

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 21:57 
studentmk_32
Я скажу довольно прямолинейную вещь - читайте стандартные учебники и каждую из стандартных задач пробовать на зуб, пытаясь сосчитать для них все интересное, что приходит в голову. При этом периодически к ним возвращаясь. Как пример - прочитали про пропагатор, попытайтесь сосчитать его для какой-нибудь задачки. Не можете посчитать точно (99% случаев)? Подумайте о каких-нибудь пределах и попробуйте сосчитать приближенно. Можете посчитать точно? Все равно подумайте о каких-нибудь интересных пределах и посмотрите, что там происходит. Хорошо разобраться с квазиклассическими методами и квантовомеханической теорией возмущений.

Больше всего можно сосчитать в двух случаях - для свободной частицы и квантового гармонического осциллятора. Последнему уделите особое внимание и используйте как этакий пример для остальных задач. К тому же вы многое узнаете про свободную КТП.
-Разберитесь с его стационарными состояниями
-Разберитесь с операторами рождения-уничтожения
-Разберитесь с весьма любопытным типом нестационарных состояний - когерентными состояниями
-Посмотрите, что происходит в квазиклассическом пределе
-Посчитайте пропагатор известными вам способами и посмотрите на его квазиклассику (или наоборот, если понимаете о чем речь, начните с его квазиклассики и попытайтесь найти из нее пропагатор)
-Попробуйте рассмотреть какие-нибудь возмущения и посчитать, что тогда происходит со спектром, да и состояниями. Опять же можете подумать, что происходит с нестационарными вроде когерентных. Можете еще рассмотреть многомерный гармонический осциллятор (он распадается на одномерные) и повозмущать его.
В общем-то большая часть из этого есть в учебниках, но это будет бесполезно, если сами не будете пытаться считать.

-- 16.10.2014, 23:10 --

Еще одна интересная вещь, которая приоткроет вам дорогу в то, что называется высокопарно "суперсимметричной квантовой механикой"

Рассмотрите такую серию потенциалов
$\Big(-\partial_x^2+n^2-\frac{n(n+1)}{\cosh^2{x}}\Big)\psi(x)=E\psi(x)$
Заметьте, что оператор можно переписать в факторизованном виде:
$-\partial_x^2+n^2-\frac{n(n+1)}{\cosh^2{x}}=Q_nQ_n^\dagger,\quad Q_n=-\partial_x+n\tanh{x}$
Рассмотрите теперь оператор, записанный наоборот $Q_n^\dagger Q_n$.

После этого подумайте вот о чем. Пусть нам известно стационарное состояние $\psi_n$
$Q_nQ_n^\dagger\psi_n=E_n\psi_n$
Теперь рассмотрите $Q_{n+1}\psi_n$ и подумайте, что же это за состояние для $Q_{n+1}Q_{n+1}^\dagger$? Спойлер: это будет стационарное для следующего потенциала в серии. Подумайте, все ли состояния так можем получить? Ничего ли не потеряли? Как можно это потерянное состояние восстановить?

А потом посмотрите на $n=0$ и обрадуйтесь.

После чего можете придумать другие потенциалы такого типа.

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 22:11 
Аватара пользователя
fizeg
А про когерентные и сжатые состояния есть хорошая учебная литература?

studentmk_32
Задача про квантовый осциллятор может быть до КТП непонятной, или показаться абстрактной и оторванной от жизни. Но она отображает, например, колебательные уровни молекул, а многомерный осциллятор (для начала 3-мерный) - и колебания других систем. Вращательные уровни молекул охватывает другая модельная система - ротатор.

-- 16.10.2014 23:12:31 --

Ещё, пожалуй, стоит посмотреть уровни Ландау - электрон в магнитном поле.

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 22:12 
Munin в сообщении #919371 писал(а):
Эвереттовская ересь [def]:
Мир состоит из квантовых систем only. Некоторые квантовые системы (критерий не указан) воспринимаются нами не в состоянии суперпозиции, а только в одном из базисных состояний (базис не указан, видимо, по энергии), даже когда реально находятся в состоянии суперпозиции. "Процедура измерения (коллапса)" выглядит так: "некоторая" квантовая система вступает во взаимодействие с "не некоторой", после взаимодействия она оказывается в суперпозиции состояний, но мы воспринимаем её только в одном из базисных состояний. В каком мы её увидим - результат случайности, вероятность пропорциональна квадрату амплитуды, как и по правилу Борна.

Это правда ересь. Одно непонятно, какое отношение она имеет к MWI???

Если хотите продолжить обсуждение, наверное стоит делать это в другой теме

-- 16.10.2014, 23:13 --

Munin
Они точно в некоторых стандартных учебниках КМ рассмотрены, вот только не помню в каких именно

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 22:22 
Аватара пользователя
fizeg в сообщении #919743 писал(а):
Это правда ересь. Одно непонятно, какое отношение она имеет к MWI???

Ну вот я читал всё что мог про MWI (было у меня дурацкое такое увлечение в юности), и получалось всё время именно это.

Если у вас другая версия - напишите. Желательно тоже в пределах абзаца.

fizeg в сообщении #919743 писал(а):
Если хотите продолжить обсуждение, наверное стоит делать это в другой теме

Запросто. Ваш ход.

fizeg в сообщении #919743 писал(а):
Они точно в некоторых стандартных учебниках КМ рассмотрены, вот только не помню в каких именно

Вот я не натыкался. А хотелось бы это дело чётко прочитать.

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 23:04 
Munin
Munin в сообщении #919749 писал(а):
Если у вас другая версия - напишите. Желательно тоже в пределах абзаца.

В классическом понимании это то же самое, что схема измерений фон Неймана, за тем исключением, что рассматривается "вся вселенная" и не предполагается никакого внешнего классического наблюдателя. По сути - измерение спутывает наблюдателя и измеряемую систему После измерения система не остается в исходной суперпозиции и наблюдатель не получается в суперпозиции, потому что общее состояние оказывается несепарабельным. Что получается - в суперпозиции находится вся вселенная. А вот описывать саму систему придется уже через матрицу плотности, которая оказывается смешанной.
Это именно что квантовая декогеренция. Что меняет современное рассмотрение - то, что это классическое понимание должно быть приближенным и расщепления не получается идеально. Но кроме как на космологических масштабах этого заметно быть не должно.

Между прочим периодически встречается точка зрения, причисляемая к "копенгагенской" (которая как нечто четко оформленная существовала в общем-то только в писанине ее противников), но в действительности отличающаяся от написанного выше только тем, что так или иначе нужен классический наблюдатель, чтобы сделать последний шаг и перейти к собственно наблюдаемой картине. В принципе то же самое и в MWI - наблюдаемая картина получается только за счет, что ее видит близкий к классическому макроскопический наблюдатель. Как теорию декогеренции развили, то разница между сторонниками непротиворечащих известным фактам версий "копенгагенской интерпретации" и MWI дошли до чисто философских различий в духе "Состояние вселенной (не) существует". А грызня из-за философский идеологий, это, извините, бред. Поэтому и заводить мне эту тему особого желания нет.

-- 17.10.2014, 00:23 --

В общем-то если возьмете статью википедии про декогеренцию, там есть рассмотрение через общее чистое состояние и через матрицу плотности плотности. Если вам больше нравится общее чистое состояние и при этом склонны к "платонизму" (т.е. что матаппарат нам дает и онтологию) - вы сторонник MWI, если же вам больше нравится матрица плотности, да еще и постоянно вставлять комментарии в позитивистском стиле о том, что этого ничего нет и это только средство описания - вы сторонник "копенгагена". Если вам на эти мелочи пофиг - вы нормальный человек :mrgreen:

-- 17.10.2014, 00:27 --

А когерентные состояния есть в ЛЛ3, задача №3 к параграфу про осциллятор

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение16.10.2014, 23:40 
fizeg в сообщении #919763 писал(а):
Как теорию декогеренции развили, то разница между сторонниками непротиворечащих известным фактам версий "копенгагенской интерпретации" и MWI дошли до чисто философских различий в духе "Состояние вселенной (не) существует".
Так всё-таки, так называемый квантовый суицид имеет смысл проделывать или это то же самое что обычный (неквантовый) суицид? Что говорит по этому вопросу развитая теория декогеренции? Или она оставляет это философии?

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение17.10.2014, 00:05 
warlock66613
В том-то и дело, что не говорит.

Увы Сакурай говорит только какие когерентные состояния интересные и оставляет их как упражнение. С другой стороны это значит, что должны быть в решебнике. Посмотрел еще Фока, Давыдова и Гриффитса и у них похоже нет вообще.

-- 17.10.2014, 01:35 --

С другой стороны, если не ограничивать себя базовыми учебниками КМ, о них должно быть в любом учебнике квантовой оптики

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение17.10.2014, 11:20 
fizeg в сообщении #919763 писал(а):
Что получается - в суперпозиции находится вся вселенная. А вот описывать саму систему придется уже через матрицу плотности, которая оказывается смешанной.
Это именно что квантовая декогеренция. Что меняет современное рассмотрение - то, что это классическое понимание должно быть приближенным и расщепления не получается идеально. Но кроме как на космологических масштабах этого заметно быть не должно.

Т.е. имеется в виду, что недиагональные члены матрицы плотности не равны в точности нулю, а чуть-чуть больше?

Есть вообще шанс, что будет придуман и поставлен эксперимент (или достаточно будет астрономических наблюдений), который позволит обнаружить влияние этих недиагональных членов?

 
 
 
 Re: Принцип неразличимости тождественных частиц
Сообщение17.10.2014, 16:38 
Аватара пользователя
fizeg в сообщении #919763 писал(а):
В классическом понимании это то же самое, что схема измерений фон Неймана, за тем исключением, что рассматривается "вся вселенная" и не предполагается никакого внешнего классического наблюдателя.

В моём понимании, это означает: применим схему в условиях, в которых её применение совершенно бессмысленно.

fizeg в сообщении #919763 писал(а):
По сути - измерение спутывает наблюдателя и измеряемую систему После измерения система не остается в исходной суперпозиции и наблюдатель не получается в суперпозиции, потому что общее состояние оказывается несепарабельным. Что получается - в суперпозиции находится вся вселенная. А вот описывать саму систему придется уже через матрицу плотности, которая оказывается смешанной.

Всё это вещи банальные, при попытках рассматривать "всю вселенную" как квантовую. НО. Совершенно непонятно, почему у вас это проассоциировалось с эвереттикой.

Точнее, понятно, почему это может проассоциироваться с эвереттикой у маловнимательного студента/аспиранта, не посвятившего много сил углублению в проблему. В эвереттике тоже пляски начинаются от идеи, что "вся вселенная - единая квантовая система". Но вот дальше идут умозаключения, специфические именно для эвереттики. И эти умозаключения выделяют эвереттику как весьма узкое подмножество во всех реализациях этой идеи (или размышлениях на её основе). Путать эвереттику ($A+B$) с этой идеей ($A$) никак нельзя.

Но для вас я такого сценария предполагать не хочу, поэтому ваша точка зрения остаётся для меня странной.

fizeg в сообщении #919763 писал(а):
Это именно что квантовая декогеренция.

Нет, простите, декогеренция - это нечто большее.

Грубо говоря, три этапа:
    I. Микросистема и наблюдатель приходят во взаимодействие, получается несепарабельное общее состояние.

    II. Это несепарабельное состояние эволюционирует, в результате чего исчезает практическая возможность "сепарировать" его обратно. Это собственно и называется декогеренцией, в узком смысле, откуда пошёл термин. У вас уже этот момент опущен.

    III. После прихода в равновесие, система оказывается в одном из базисных состояний. Это тот этап, на котором реализуется правило Борна. Этот момент - нерешённый теорией декогеренции, по крайней мере, так было на 2003 год. И этот момент - полностью отсутствует в "эвереттовской ереси" во всех её разновидностях. Собственно, Эверетт начал с постулирования, что этот этап не нужен вообще, физически не происходит, а является иллюзией.

fizeg в сообщении #919763 писал(а):
В общем-то если возьмете статью википедии про декогеренцию, там есть рассмотрение через общее чистое состояние и через матрицу плотности плотности.

Я предпочитаю опираться не на википедию, а на менее скудные обзоры (которые, может быть, уже подустарели, но всё равно куда подробней):
1. Менский М Б "Квантовая механика: новые эксперименты, новые приложения и новые формулировки старых вопросов" УФН 170 631–648 (2000).
2. [arXiv:quant-ph/0312059] M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev.Mod.Phys.76:1267-1305,2004.

fizeg в сообщении #919763 писал(а):
Если вам больше нравится общее чистое состояние и при этом склонны к "платонизму" (т.е. что матаппарат нам дает и онтологию) - вы сторонник MWI, если же вам больше нравится матрица плотности, да еще и постоянно вставлять комментарии в позитивистском стиле о том, что этого ничего нет и это только средство описания - вы сторонник "копенгагена". Если вам на эти мелочи пофиг - вы нормальный человек

Вообще-то мне нравится не смешивать две неэквивалентные вещи. Если они в статье википедии смешиваются - статья некачественная.

fizeg в сообщении #919763 писал(а):
А когерентные состояния есть в ЛЛ3, задача №3 к параграфу про осциллятор

Я имел в виду, не в столь лаконичном виде. Страниц десять хотя бы.

fizeg в сообщении #919773 писал(а):
С другой стороны, если не ограничивать себя базовыми учебниками КМ, о них должно быть в любом учебнике квантовой оптики

Вот в том-то и дело, что там-то они есть, но сразу нагружены рассуждениями про фотоны и поле. А хотелось бы в чистом виде. Раз вы говорите, что такое бывает.

 
 
 [ Сообщений: 146 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group