2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 10  След.
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:19 
Аватара пользователя
Red_Herring в сообщении #881692 писал(а):
Это достаточно, но необходимо. А нужно и достаточное и необходимое условие
Необходимое и достаточное условие: $AB=BA$.

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:20 
Аватара пользователя
zvm в сообщении #881699 писал(а):
Необходимое и достаточное условие: $AB=BA$.

но почему?

-- 29.06.2014, 09:21 --

а, ну да, единичная матрица под это условие подлазит как раз

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:26 
Аватара пользователя
fronnya в сообщении #881700 писал(а):
но почему?
Потому что
$\\(A+B)^2=(A+B)(A+B)=[(A+B)A+(A+B)B]=AA+BA+AB+BB=A^2+AB+BA+B^2$

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:31 
Аватара пользователя
fronnya в сообщении #881696 писал(а):
а как мне проверять ?


Подставлять и честно считать ручками, не используя никаких формул, которые могут быть верны или неверны. Заметим что вопрос стоит так: верна ли формула квадрата для всех матриц. Т.е. если она верна для каких-то матриц, то это не значит что она верна.

Придя к заключению, его следует обосновать, мы не в угадайку играем. zvm, пусть он сам дойдет до ответа!

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:33 
Аватара пользователя
Red_Herring в сообщении #881708 писал(а):
Подставлять и честно считать ручками, не используя никаких формул, которые могут быть верны или неверны. Заметим что вопрос стоит так: верна ли формула квадрата для всех матриц. Т.е. если она верна для каких-то матриц, то это не значит что она верна.

Придя к заключению, его следует обосновать, мы не в угадайку играем. zvm, пусть он сам дойдет до ответа!

я так и делал до тех пор и я убедился сам, что не для всех матриц справедливо, пока zvm мне не открыл истину. Теперь мне понятно.

-- 29.06.2014, 09:48 --

А что делать с матрицей в степени $n$ ?

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:56 
Аватара пользователя
fronnya в сообщении #881709 писал(а):
А что делать с матрицей в степени $n$ ?


* Разложить в сумму двух коммутирующих матриц $A$ и $B$. Каких—думайте сами.
* Применить бином Ньютона: для таких матриц он верен. Почему?
* Найти$ A^k$ и $B^j$ (если удачно разложили это легко).
* Скомбинировать

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 10:59 
Аватара пользователя
Red_Herring в сообщении #881716 писал(а):
fronnya в сообщении #881709 писал(а):
А что делать с матрицей в степени $n$ ?


* Разложить в сумму двух коммутирующих матриц $A$ и $B$. Каких—думайте сами.
* Применить бином Ньютона: для таких матриц он верен. Почему?
* Найти$ A^k$ и $B^j$ (если удачно разложили это легко).
* Скомбинировать

понятно, мне в теории надо дальше продвинуться.

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 11:48 
Аватара пользователя
Подсказка: найдите $\begin{pmatrix} 0 &1 \\ 1 & 0\end{pmatrix}^2$

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 12:02 
Аватара пользователя
Red_Herring
Да, вы правы, континуум только при $\pi,$ я ошибался.

-- 29.06.2014 13:07:57 --

Red_Herring в сообщении #881708 писал(а):
Придя к заключению, его следует обосновать

Ну вот, начинают человека грузить самой занудной частью математики :-)

Это же не fun!

Red_Herring в сообщении #881716 писал(а):
Разложить в сумму двух коммутирующих матриц $A$ и $B$. Каких—думайте сами.

Тут важное примечание: для каждой отдельной матрицы какого-то подтипа разложение может быть своё, или даже несколько разных "удобных" разложений.

fronnya
Вы вот это сделали?

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 13:26 
Аватара пользователя
Red_Herring в сообщении #881729 писал(а):
Подсказка: найдите $\begin{pmatrix} 0 &1 \\ 1 & 0\end{pmatrix}^2$

нашел.

-- 29.06.2014, 12:27 --




    Xaositect в сообщении #881293 писал(а):
    для матрицы $\left(\begin{matrix}a_1 b_1 & a_1 b_2\\ a_2 b_1 & a_2 b_2\end{matrix}\right)$, как у Вас в примере $\begin {pmatrix}-5&5\\-5&5\end{pmatrix}^n$, тоже несложно степени посчитать (и вообще для $(a_i b_j)$).

    Этого не понял.
    Munin в сообщении #881318 писал(а):
    $$\begin{pmatrix}1&a\\0&1\end{pmatrix}^n,\qquad\begin{pmatrix}1&a\\0&b\end{pmatrix}^n$$
Это не сделал.

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 13:44 
Аватара пользователя
fronnya в сообщении #881767 писал(а):
нашел.



Так поделитесь!

fronnya в сообщении #881767 писал(а):
Это не сделал.


Подсказка. Либо попробуйте n=2,3,4 и угадать, либо через
$$\begin{pmatrix}0&1\\0&0\end{pmatrix}^n$$

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 13:54 
Аватара пользователя
Red_Herring в сообщении #881776 писал(а):


Так поделитесь!

Получается единичная матрица.



Red_Herring в сообщении #881776 писал(а):
fronnya в сообщении #881767 писал(а):
Это не сделал.
Подсказка. Либо попробуйте n=2,3,4 и угадать, либо через
$$\begin{pmatrix}0&1\\0&0\end{pmatrix}^n$$

опять не понял. Угадать могу. Но не всегда это работать ведь будет.

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 14:03 
Аватара пользователя
Чему равно $\begin{pmatrix}0&1\\0&0\end{pmatrix}^n$?

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 14:14 
Аватара пользователя
Red_Herring в сообщении #881783 писал(а):
Чему равно $\begin{pmatrix}0&1\\0&0\end{pmatrix}^n$?

нулю.

 
 
 
 Re: перемножить матрицы ( значок алгебраической суммы)
Сообщение29.06.2014, 14:18 
Аватара пользователя
fronnya в сообщении #881780 писал(а):
Угадать могу. Но не всегда это работать ведь будет.

А после угадания - проверяете. Вы же помните, что такое индукция?

И кстати, а чему теперь равно $\begin{pmatrix}0&1\\1&0\end{pmatrix}^n$?

 
 
 [ Сообщений: 138 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 10  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group