2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:35 
Dan B-Yallay в сообщении #847332 писал(а):
Из этого следует $f^{(n)}(0)=f^{(n)}(1) $

это почему?

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:37 
Аватара пользователя
Oleg Zubelevich в сообщении #847329 писал(а):
не удалось мне там всем условиям удовлетворить


А Вы все условия написали здесь?

Oleg Zubelevich в сообщении #847280 писал(а):
Вопрос: можно ли подобрать такую последовательность полиномов $P_n$, что

1) полиномы приближают данную функцию равномерно на $[0,1]$ при $n\to \infty$
2) сам полином $P_n$ и его производные до $n$-й степени совпадают соответственно с функцией и ее производными в точках $0,1$


Или аппроксимировать производные на $[0,1]$ все-таки тоже хочется?

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:39 
Аватара пользователя
Oleg Zubelevich в сообщении #847334 писал(а):
это почему?

$n$-ная производная от полинома степени $n$ - константа.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:42 
Dan B-Yallay в сообщении #847338 писал(а):
$n$-ная производная от полинома степени $n$ - константа.

А Вы с чего взяли что $P_n$ это полином степени $n$?

g______d: там мне не удалось удовлетворить условию

$\tilde P_\varepsilon(1)= 1$

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:45 
Аватара пользователя
Oleg Zubelevich в сообщении #847343 писал(а):
А Вы с чего взяли что $P_n$ это полином степени $n$?

Сила привычки.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:50 
Аватара пользователя
Oleg Zubelevich в сообщении #847343 писал(а):
g______d: там мне не удалось удовлетворить условию

$\tilde P_\varepsilon(1)= 1$


Потому что Вы аппроксимировали производную, а можно аппроксимировать сразу функцию. Любая гладкая функция представима в виде $f(x)=Q(x)+x^n(1-x)^n g(x)$, где $Q$ – полином, а $g$ – гладкая функция. Если вместо $g$ подставить полином, то у результата в любом случае будут такие же производные, как у $Q$.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 22:42 
g______d в сообщении #847272 писал(а):
_Ivana, все-таки, вы можете точно сформулировать хоть какое-нибудь точное утверждение про сходимость? Желательно еще с доказательством или ссылкой.
Простите, но ничего более содержательного, чем я уже сказал и дал ссылки, я сформулировать не могу. По крайней мере, на текущем уровне своего неведения. Прошу простить и надеюсь на понимание.

Если же отвлечься от Лагранжа/синка, то по стартовой задаче темы, насколько я понимаю, обнаруживаются разные трактовки:
1) последовательность полиномов удовлетворяет производным в краях и просто сходится к какой-то функции - и возникает вопрос: к какой?
2) сходится обязательно к заранее определенной функции
3) некие дополнительные условия, но при этом мы выходим за рамки полиномов - применяем гладкие "обрезающие функции" и т.п.

Я при создании темы имел в виду трактовку 1.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 22:54 
Аватара пользователя
_Ivana в сообщении #847371 писал(а):
1) последовательность полиномов удовлетворяет производным в краях и просто сходится к какой-то функции - и возникает вопрос: к какой?


В зависимости от выбора полиномов может вообще сходиться или сходиться в определенном смысле к любой, см. выше.

Я предлагаю вам сформулировать гипотезу на математическом языке (без всяких там полиномов бесконечной степени), тогда скорее всего будет ответ.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение10.04.2014, 13:40 
Испытывая трудности владения математическим языком, озвучу свои крайние кустарные результаты.
Рассматриваю последовательность полиномов, построенную на интервале [-1; 1] по следующим критериям: $P(-1) = -1, P(1) = 1$, производные вплоть до некоторого порядка в краях интервала нулевые. То есть, немного сдвинутая и отмасштабированная ступенька. Полиномы по очевидным причинам состоят только из нечетных степеней аргумента, их графики качественно такие же, как на картинке с первой страницы. Наборы их коэффициентов строго знакопеременны, при увеличении степени полинома коэффициенты при одной и той же степени аргумента сохраняют знак и растут по модулю, причем этот рост сильно увеличивается в районе средних степеней аргументов. График модуля наборов коэффициентов для первых нескольких полиномов:
Изображение
, логарифм этих данных:
Изображение
Последние графики хорошо приближаются параболами, значит модули коэффициентов стремятся к Гауссовскому колоколу. Также прослеживается некая тенденция при увеличении степени полиномов, которая предположительно будет сохраняться и в дальнейшем. Если рассматривать эти коэффициенты, вдобавок домноженные на соответствующие факториалы, как коэффициенты ряда Тэйлора некоей функции, то видно, что с увеличением порядка производной их абсолютные значения сильно и неограниченно возрастают. Но вопрос сходимости последовательности построенных таким образом полиномов к какой-либо предельной функции мне не ясен.

(Оффтоп)

ЗЫ также пока не ясен вопрос выбора нормального бесплатного хостинга картинок с возможностью превьюшек, но без назойливой рекламы и всплывающих окон. В свое время я создавал тему на форуме, где просил посоветовать нормальный хостинг. Было предложено много вариантов, но никакого предпочтительного на фоне остальных не выявилось.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение12.04.2014, 02:20 
Аватара пользователя
_Ivana в сообщении #847934 писал(а):
Рассматриваю последовательность полиномов, построенную на интервале [-1; 1] по следующим критериям: $P(-1) = -1, P(1) = 1$, производные вплоть до некоторого порядка в краях интервала нулевые.


Т. е. если $n=2k$ четное, то, например, подходят $\frac{x(x^2-1)^{2k}}{2^{2k}}$? Тогда можно догадаться, к чему они сходятся.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение12.04.2014, 13:06 
g______d, спасибо, но не подходят, т.к. у вас $P(-1) = P(1) = 0$, и при этом непонятно, зачем вам знаменатель - ваша функция и так стремится к тождественно нулевой. К тому же у меня строится полином (единственно возможный) минимальной степени для удовлетворения условиям - например, для функции и $3$ ее производных в двух точках (8 условий) у меня полином $7$ степени (8 коэффициентов), а у вас большей, что допускает неоднозначность. Хотя я явно не оговорил этого в условии, но подразумевал всегда минимально необходимую степень полинома.

ЗЫ я подозревал в своих коэффициентах похожесть на бином, но не так явно. Хотя, думаю, можно вывести общую формулу коэффициентов моих полиномов, и может она окажется не сложной.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение12.04.2014, 14:23 
Аватара пользователя
Я считать не умею :(

-- Сб, 12 апр 2014 04:30:28 --

Точнее так: надо взять $C \int\limits_{0}^x (1-t)^{2k}(1+t)^{2k}\,dt$, где константа выбрана так, чтобы значение в единице было равно единице.

-- Сб, 12 апр 2014 04:36:13 --

Степень равна $4k+1$, количество условий $4k+2$ (значения функции и $2k$ производных в точках $1$ и $-1$).

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение12.04.2014, 15:49 
Вот это по первому впечатлению очень похоже на то, что надо! Вот до чего-то подобного я и хотел додуматься. Спасибо. Вечером проверю на Матлабе, сейчас руками проверил для $k=1$, все сходится. Пока не вдумывался, можно ли скакать не через 4 степени а через 2, но это не принципиально. И финальный вопрос, который мне не по силам - сходится ли это к чему-либо и если да, то есть ли у этого чего-либо красивое выражение.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение12.04.2014, 20:33 
g______d, если не ошибаюсь, общая формула многочлена получается такая: $P_k(x) = C\sum\limits_{i=0}^{2k}\frac{(-1)^{i}C_{2k}^{i}}{2i+1}x^{2i+1}$, где $C_{2k}^{i}$ - биномиальные коэффициенты, $C = \frac{1}{\sum\limits_{i=0}^{2k}\frac{(-1)^{i}C_{2k}^{i}}{2i+1}}$. Промоделировал, полиномы получаются такие же, как и при решении системы линейных уравнений "в лоб", только теперь можно рассчитать до степени порядка $50$, дальше коэффициенты выходят за диапазон. Насчет сходимости - посмотрел изменение коэффициента при первой степени аргумента - монотонно возрастает сильнее чем логарифм.

UPD насчет сходимости. У меня сильное подозрение, что эти полиномы сходятся к идеальной ступеньке. Рассмотрев подынтегральную функцию при увеличении $k$, и разбив интеграл на сумму двух по областям $[0, \varepsilon] и [\varepsilon, x]$ (рассматривая без уменьшения общности положительные аргументы), можно показать, что для любого $\varepsilon$ существует такое $k$, что отношение интеграла по второй области к интегралу по первой меньше любого наперед заданного числа. Отсюда следует, что (при нормировке интеграла) для любого $\varepsilon$ существует такое $k$, что значение интеграла будет отличаться от единицы на любую заранее заданную малую величину уже на интервале $[0, \varepsilon]$, из чего следует, что с увеличением $k$ мы можем как угодно близко приблизиться к единице при любом сколь угодно малом значении аргумента - чистая ступенька в пределе.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение13.04.2014, 01:21 
UPD 2: забыл знакопеременность коэффициентов задать в формулах выше. Поправил.

(Оффтоп)

Есть все-таки польза в неограниченном времени исправления постов, если этой возможностью не злоупотреблять и пользоваться во благо :-)

 
 
 [ Сообщений: 69 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group