2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 04:14 
Аватара пользователя
_Ivana в сообщении #847023 писал(а):
Я могу ошибаться, но у меня подозрение, что базисные многочлены Лагранжа сходятся к синку со всеми своими производными.


Вы имеете в виду интерполяционные многочлены Лагранжа? По отношению к какой сетке?

Мне не очевидно, что даже их значения во всех точках сходятся, не то что там производные какие-то.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 13:17 
g______d, некоторое время назад я кустарно изобретал очередные велосипеды, обнаружил определенные закономерности, которые в лирической форме (по мнению прочитавших) описал в этом после. Потом я обнаружил на просторах инета этот маленький аппендикс, ссылку на который привел вот в этой теме, в которой автор тоже изобретал этот велосипед, но с более мощных теоретических и не лирических позиций. В общем, велосипед популярный:
Цитата:
The equivalence of sinc interpolation to Lagrange interpolation was apparently first published by the mathematician Borel in 1899, and has been rediscovered many times since

ЗЫ только что случайно заметил в цитате уже промелькнувшую в теме фамилию. Оказывается, вот кто был настоящий первоизобретатель этого велосипеда. И да, как уже говорили - более 100 лет назад :-)

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 18:14 
g______d

Вы не могли бы изложить решение задачи из головного поста внятно и подробно?

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 19:50 
Аватара пользователя
Oleg Zubelevich в сообщении #847238 писал(а):
Вы не могли бы изложить решение задачи из головного поста внятно и подробно?


Формулировку задачи из головного поста я так и не понял, поэтому не могу. Я писал про решение другой задачи: пусть есть функция, бесконечно гладкая на $(-\infty,0)\cup(1,+\infty)$, непрерывная слева со всеми производными в точке 0 и непрерывная справа со всеми производными в точке 1. Тогда она продолжается до гладкой функции на $\mathbb R$. Решение надо? По-моему, Вам это должно быть очевидно.

-- Вт, 08 апр 2014 09:53:59 --

_Ivana, все-таки, вы можете точно сформулировать хоть какое-нибудь точное утверждение про сходимость? Желательно еще с доказательством или ссылкой.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 19:59 
задачу из головного поста я понял так. вот берем функцию, которую Вы описали:
g______d в сообщении #847272 писал(а):
пусть есть функция, бесконечно гладкая на $(-\infty,0)\cup(1,+\infty)$, непрерывная слева со всеми производными в точке 0 и непрерывная справа со всеми производными в точке 1. Тогда она продолжается до гладкой функции на $\mathbb R$.


Вопрос: можно ли подобрать такую последовательность полиномов $P_n$, что

1) полиномы приближают данную функцию равномерно на $[0,1]$ при $n\to \infty$
2) сам полином $P_n$ и его производные до $n$-й степени совпадают соответственно с функцией и ее производными в точках $0,1$

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 20:04 
Аватара пользователя
Oleg Zubelevich в сообщении #847280 писал(а):
1) полиномы приближают данную функцию равномерно на $[0,1]$ при $n\to \infty$


Данную – это какую? На $[0,1]$ у нас пока нет функции. Или просто сходятся к какой-то?

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 20:06 
сходятся к заданной функции из $C^\infty[0,1]$ Давайте считать, что задана такая функция

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 20:21 
Аватара пользователя
Oleg Zubelevich в сообщении #847287 писал(а):
Давайте считать, что задана такая функция
Предполагается, что заданная функция из $C^\infty [0,1]$ бесконечно гладко стыкуется в точках $0,1$ с первоначальной?

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 20:46 
Аватара пользователя
Тогда вообще не важно, что происходит вне $[0,1]$, давайте считать, что дана функция на этом интервале и всё (к ответу это меня пока не приближает).

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:02 
Аватара пользователя
Тогда полиномы - это частичные суммы ряда Тейлора (если есть) этой данной функции в любой внутренней точке отрезка [0,1]
:shock:

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:07 
Аватара пользователя
Dan B-Yallay в сообщении #847309 писал(а):
Тогда полиномы - это частичные суммы ряда Тейлора (если есть) этой данной функции в любой внутренней точке отрезка [0,1]
:shock:


Они ни одному из условий не удовлетворяют, вообще говоря.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:12 
Аватара пользователя
Да, глупость ляпнул.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:26 
Аватара пользователя
Oleg Zubelevich в сообщении #847280 писал(а):
Вопрос: можно ли подобрать такую последовательность полиномов $P_n$, что

1) полиномы приближают данную функцию равномерно на $[0,1]$ при $n\to \infty$
2) сам полином $P_n$ и его производные до $n$-й степени совпадают соответственно с функцией и ее производными в точках $0,1$


А почему нельзя сделать примерно так же, как Вы делали выше? Вычтем из функции полином и сведем задачу к случаю, когда значения функции и первых $n$ производных в 0 и 1 равны нулю. После этого приблизим полиномами функцию $\frac{f(x)}{x^n(x-1)^n}$; ясно, что если умножить результат на $x^n(x-1)^n$ и прибавить вычтенный полином, получится то, что нужно.

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:32 
не удалось мне там всем условиям удовлетворить

 
 
 
 Re: Бесконечно гладкие функции с "врезками"
Сообщение08.04.2014, 21:34 
Аватара пользователя
Oleg Zubelevich в сообщении #847280 писал(а):
2) сам полином $P_n$ и его производные до $n$-й степени совпадают соответственно с функцией и ее производными в точках $0,1$
Из этого следует $f^{(n)}(0)=f^{(n)}(1) $. Если заданная функция этим условиям не удовлетворяет...

 
 
 [ Сообщений: 69 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group