Да все они несолидные! И Тао такой же!
С учетом сложности вопроса, можно простить ошибки.
Поскольку я выше написал много неправильного, хочу себя исправить и изложить свой последний взгляд на вопрос.
Надеюсь, что теперь без чепухи.
1. Если не требовать периодичности давления для случая, когда поле скоростей периодично, задача становится недоопределенной.
Фактически там возникает дополнительная неизвестная действующая сила, подмешивающая текущую жидкость, постоянная по пространству,
но не обязательно постоянная по времени.
Работать с недоопределенной задачей не принято.
Поэтому постановка без оговорки, что давление периодично - не корректна.
2. Никаких ограничений на начальное поле скоростей существование периодического давления не накладывает
(я выше два раза написал глупость, что накладывает
).
Периодическое давление однозначно вычисляется по полю скоростей.
3. Уверен, можно доказать, что если существует решение с непериодическим давлением, то существует решение с периодическим давлением, и наоборот, если существует решение с периодическим давлением, то для любой гладкой дополнительной силы, постоянной по пространству, тоже есть решение.
Доказательство нельзя провести алгебраически в силу нелинейности уравнения. Надо доказывать путем линейной вариации, раскладывая в ряд Тейлора по коэффициенту. Нужно решать цепь уравнений типа диффузии (для Навье-Стокса) или обычных линейных (для уравнений Эйлера). После перейти к пределу.
4. Думаю, что финский контрпример основан на подмешивающей силе, уходящей на бесконечность за конечный промежуток времени, не имеет никакой ценности и не является основанием для получения приза.