И каким же образом доказательство единственности обобщенного решения закрывает проблему существования гладкого решения?
Кстати, из единственности обобщенного решения следует существование и единственность гладкого:
1. вечное обобщенное решение существует (доказано)
2. существуют локальные по времени гладкие решения (доказано)
Значит, если обобщенное решение единственно, оно совпадает локально по времени с гладким,
а значит обобщенное решение гладкое.
- да, тогда обобщенное решение гладкое
в течение времени существования этого гладкого решения. А дальше оно может перестать быть гладким. Так что проблема
глобального существования гладкого решения останется открытой. Т.е. результат в этом плане нулевой. Иначе не было бы предмета (заочной) дискуссии между Фефферманом и Ладыженской, состоящей в том что:
1. Фефферман хочет глобального гладкого решения,
2. Ладыженская предлагает строить глобальное единственное абы какое решение.
Конечно, если смогут доказать существование глобального решения, например, класса Ладыженской-Проди-Серрина (т.е. это слабое решение с несколько лучшей суммируемостью скорости чем диктуемая энергетической оценкой), то это автоматически влечет его единственность и гладкость, т.е. решение проблемы 1. Тем самым, на нынешнем мейнстриме навьестоксовской деятельности проблемы 1 и 2 как бы эквивалентны. Но Ладыженская говорит: а вдруг кто-то докажет глоб. существование и единственность решения в другом классе (допустим, хуже чем для нынешних теорем единственности)? Тогда будет решена задача 2, но не задача 1. Такой человек не получит миллион, хотя с точки зрения навье-стоксовского сообщества он "решит проблему века". Это означает, что ради упрощения формулировок задачи на миллион в жертву была принесена математическая полнота задачи, которая была тем самым "политизирована".