2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 3, 4, 5, 6, 7  След.
 
 Re: К вопросу о форме Вселенной
Сообщение27.11.2013, 11:29 


07/02/13
93
Xugin в сообщении #793300 писал(а):
Peter2 в сообщении #793298 писал(а):
Xugin в сообщении #793285 писал(а):
Munin, построить диаграмму аналогичную Герцшпрунга - Рассела для галактик принципиально невозможно или пока невозможно?

А как, пардон, такое возможно? :shock:

Я имел в виду постройку эволюционного трека для галактики.

Для звезды такое можно сделать, потому что звезде можно приписать конкретный спектр (связанный с температурой поверхности) и независимо измерить светимость с высокой точностью. И эти параметры связаны между собой с помощью проработанной физической теории.

С галактиками такие номера не проходят, так как такие параметры, как цвет и светимость - это интегральная величина по совокупности звезд, плюс пыль, плюс газ, плюс бурные процессы в активном ядре (если таковое имеется). Все это усугубляется неопределенностью массы, взаимодействием с соседями и т.д.

Вообщем, конечно, как-то эволюцию промоделировать можно, но насчет аналога диаграммы ГР, дело, я думаю, не дойдет.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение27.11.2013, 13:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Xugin в сообщении #793184 писал(а):
В этих галактиках бОльшая доля пыли чем газа? Процесс звездообразования не начинался вовсе? Или это дозвёздные галактики?

Если честно, я в этом не копался, а сейчас обнаружил, что толком и не могу выяснить, что это за "беззвёздные галактики", которые мне запали в память. Нашёл только публикацию, в которой говорится о том, что некоторые квазары не имеют звёзд по косвенным признакам, причём - только в области балджа. Разглядеть саму галактику-хозяин (host galaxy) часто просто невозможно.

Xugin в сообщении #793184 писал(а):
Активные ядра характерны только для ранних стадий или есть вторичные от столкновений?

Активные ядра бывают и почти в современной Вселенной - в очень близких галактиках - но сравнительно редко, и со сравнительно низкой активностью. Характерны - да, для $z\gtrsim 1.$ Насчёт вторичных - неизвестно, как я понимаю. Вообще неизвестно в деталях, как именно merger-ы происходят, и уж тем более, что там случается с ядрами.

Xugin в сообщении #793285 писал(а):
Munin, построить диаграмму аналогичную Герцшпрунга - Рассела для галактик принципиально невозможно или пока невозможно?
Xugin в сообщении #793300 писал(а):
Я имел в виду постройку эволюционного трека для галактики.

Пока не складывается. Это область активно продолжающихся исследований.

    (Ещё в начале 20 века Хаббл предложил классификацию галактик, которую неосторожно назвал "стадиями", и думал, что они отвечают разным этапам эволюции галактики. Оказалось, что эволюцию эти классы не отображают, хотя для классификации удобны. Имейте это в виду, если встретите выражения навроде "спиральные галактики поздних типов".)


-- 27.11.2013 14:43:32 --

Peter2 в сообщении #793304 писал(а):
Для звезды такое можно сделать, потому что звезде можно приписать конкретный спектр (связанный с температурой поверхности) и независимо измерить светимость с высокой точностью. И эти параметры связаны между собой с помощью проработанной физической теории.

С галактиками такие номера не проходят, так как такие параметры, как цвет и светимость - это интегральная величина по совокупности звезд, плюс пыль, плюс газ, плюс бурные процессы в активном ядре (если таковое имеется). Все это усугубляется неопределенностью массы, взаимодействием с соседями и т.д.

Вообщем, конечно, как-то эволюцию промоделировать можно, но насчет аналога диаграммы ГР, дело, я думаю, не дойдет.

Ну, очевидно, речь шла не буквально о тех же координатах "цвет - светимость" или "спектральный класс - светимость" (или "температура - светимость"). Можно использовать в качестве координат любые доступные параметры галактик, например, те, в которых построена зависимость Талли-Фишера (Тулли-Фишера, Tully-Fisher).

Простительно даже то, что последовательности звёзд на диаграмме Герцшпрунга-Рассела (главная последовательность, несколько ветвей гигантов и карликов) никак не совпадают с эволюционными треками.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение27.11.2013, 16:03 


12/11/13
68
Someone

(Оффтоп)

Someone в сообщении #793008 писал(а):
Измеряя размеры физического тела, Вы в лучшем случае можете получить какую-то величину, может быть, даже близкую к числу $\pi$, но не имеющую к нему отношения.

Это как не имеющую? А как же тогда называется величина отношения длины окружности к длине её диаметра? Математическая модель - евклидово пространство, согласен, но реальность, знаете ли, может отличатся от матиматической модели, например, отличными значениями отношениям длины окружности к длине её диаметра.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение27.11.2013, 16:07 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

Shkoloto в сообщении #793401 писал(а):
Это как не имеющую?

А вот так не имеющую. В математике есть принятое определение числа $\pi.$ Оно сформулировано так, что приводит всегда к одному и тому же числу. Это определение вообще может быть переформулировано безо всяких упоминаний геометрии - как сумма ряда, например. И если реальность отличается от евклидова пространства, то точно так же реальность отличается от математически точного числа $\pi.$ А не иначе, не число $\pi$ отличается от известного вам значения.

Отношение длины окружности к её диаметру числом $\pi$ не называется. Оно равно числу $\pi$ в определённых частных случаях.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение27.11.2013, 21:07 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Интересно, как так скоро забылись мои сообщения на странице 3. Вроде бы Shkoloto прореагировал на них так, как будто понял это. И тут снова! :? Видимо, описание было не очень ясное.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение27.11.2013, 21:23 
Заслуженный участник
Аватара пользователя


11/12/05
10432

(Оффтоп)

arseniiv в сообщении #793542 писал(а):
Интересно, как так скоро забылись мои сообщения на странице 3. Вроде бы Shkoloto прореагировал на них так, как будто понял это. И тут снова! :? Видимо, описание было не очень ясное.
Сынок дебил - отцу:
- Пап, а где мама
- На кухне
- Паап, а где мама?
- НА КУХНЕ
- Паааап а где мама?.
Удар. дебил летит на кухню.
- О, мама, а где папа?

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 00:53 
Заслуженный участник
Аватара пользователя


23/07/05
18040
Москва
Shkoloto в сообщении #793401 писал(а):
Это как не имеющую? А как же тогда называется величина отношения длины окружности к длине её диаметра?
А так и называется: отношение длины данной конкретной окружности к её диаметру. А у другой окружности это отношение будет другим, и на все окружности "чисел $\pi$" не напасёшься. Ещё раз повторяю: число $\pi$ — это отношение длины окружности к её диаметру в евклидовой геометрии. Согласно древнему определению. А также потому, что именно в евклидовой геометрии это отношение имеет определённое значение, одинаковое для всех окружностей.
Физический мир — это не геометрия. В нём нет точек, прямых, окружностей и других объектов, изучаемых в геометрии. Чисел в нём тоже нет. Вообще никаких. В частности, в физическом мире нет числа $\pi$. Поэтому любые измерения не имеют к числу $\pi$ никакого отношения.
Если в какой-то неевклидовой геометрии (например, в геометрии Лобачевского) есть длина окружности и диаметр окружности, то частное от деления одного на другое хотя и является осмысленной величиной, но отношения числу $\pi$ также не имеет. Потому что число $\pi$ определяется в евклидовой геометрии.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 13:32 


12/11/13
68
arseniiv
Ага, полностью согласен с тем что мерить угол значительно проще и более того это уже было проделано. Тем не менее, предложеный мной способ пока тоже никто не оспорил и не показал, что он невозможен. Точнее докапываются к тому, что я говорю, что число $\pi$ можно измерить, хотя я подразумеваю-то я как раз то, что измерить можно только отношение реальных величин длин окружности и диаметра, что никоим образом сути метода не меняет.

Dan B-Yallay

(Оффтоп)

Думается, что свой пост вы адресовали в мою сторону, а не в сторону Munin'а и Someone'а, хотя можно понять двояко.


Munin
Munin в сообщении #793407 писал(а):
как сумма ряда, например

У меня новость для вас. Именно так число $\pi$ и рассчитывается, только ряд берется вовсе не произвольный, а имеющий прямое отношение к геометрии круга в модели евклидовой геометрии.
И я так понял, что вы согласны, что некое отличие чего-то, расчитанного по модели вполне может отличаться от реальности. Т.е. к сути предложенного мной метода вопросов нет
Someone
Я упомянул об измерении значении числа $\pi$, посколько не ожидал, что у некоторых возникнут проблемы с пониманием того, что под чем подразумевается. Раз уж мы говорим о возможном отличии реального мира от геометрии евклида, то подразумевается, что реальное значение отношения длины окружности к диаметру и вычисляемое при случае евклидовой геометрии это разные вещи. В дальнейшем я специально для вас буду употреблять только термин "отношение длины окружности к диаметру" касательно измерений, и "$\pi$", если рассматривается случай евклидовой геометрии.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 14:05 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Shkoloto в сообщении #793744 писал(а):
У меня новость для вас. Именно так число $\pi$ и рассчитывается, только ряд берется вовсе не произвольный, а имеющий прямое отношение к геометрии круга в модели евклидовой геометрии.

У меня новость для вас. Число $\pi$ рассчитывается через много разных рядов, которые не имеют никакого отношения к "геометрии круга". Или, если и имеют, то весьма косвенное.

Shkoloto в сообщении #793744 писал(а):
И я так понял, что вы согласны, что некое отличие чего-то, расчитанного по модели вполне может отличаться от реальности.

Я не могу быть согласен с грамматически бессмысленным предложением. "Отличие может отличаться"???

Shkoloto в сообщении #793744 писал(а):
В дальнейшем я специально для вас буду употреблять только термин "отношение длины окружности к диаметру" касательно измерений, и "$\pi$", если рассматривается случай евклидовой геометрии.

Это будет не "специально для него", а вообще правильно, и для всех, чтобы все нормальные люди вас понимали.

Shkoloto в сообщении #793744 писал(а):
Я упомянул об измерении значении числа $\pi$, посколько не ожидал, что у некоторых возникнут проблемы с пониманием того, что под чем подразумевается.

Проблемы возникли у вас. Впрочем, люди необразованные, действительно, часто не ожидают, что у них возникнут проблемы: они неправильно оценивают свои знания, и очень часто уверены в том, чего на самом деле не знают.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 15:48 


12/11/13
68
Munin
Munin в сообщении #793760 писал(а):
Я не могу быть согласен с грамматически бессмысленным предложением. "Отличие может отличаться"???

Сорри.
И я так понял, что вы согласны, что некое отличие от чего-то, рассчитанного по модели, вполне может отличаться от присутствовать в реальности.

Munin в сообщении #793760 писал(а):
которые не имеют никакого отношения к "геометрии круга".

Надеюсь, что вы можете привести пример такого ряда, естественно, с описанием того, каким образом данный ряд получен без упоминания окружности

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 16:20 
Заслуженный участник
Аватара пользователя


11/12/05
10432
Shkoloto в сообщении #793744 писал(а):
В дальнейшем я специально для вас буду употреблять только термин "отношение длины окружности к диаметру" касательно измерений, и "$\pi$", если рассматривается случай евклидовой геометрии.
Я предлагаю вам использовать такой подход не только по отношению к числу пи, но и к другим, а то получается дискриминация на круглой почве. Берете круг из картона (или просто округлое бревно) и измеряете его диаметр в двух различных направлениях. Разделив одно значение на другое, получите экспериментальное значение числа 1. Не останавливайтесь на этом. Можно еще разделить измеренный диаметр на измеренный радиус и получить реальное, самое настоящее значение двойки. А это уже на нобелевку тянет.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 18:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Shkoloto в сообщении #793793 писал(а):
И я так понял, что вы согласны, что некое отличие от чего-то, рассчитанного по модели, вполне может присутствовать в реальности.

Может.

Но в данном случае, не присутствует.

Что дальше?

Shkoloto в сообщении #793793 писал(а):
Надеюсь, что вы можете привести пример такого ряда, естественно, с описанием того, каким образом данный ряд получен без упоминания окружности

В разделе "Математика" меня как-то завалили этими рядами, стоило только спросить. Не запомнил ни одного, потому что мне это не надо было. Вы можете тоже поинтересоваться по адресу.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение28.11.2013, 18:59 
Заслуженный участник
Аватара пользователя


23/07/05
18040
Москва
Pi Formulas

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение03.12.2013, 08:24 


12/11/13
68
Someone в сообщении #793870 писал(а):

Все эти формулы основаны либо на тригонометрических функциях, либо на приближениях суммы площади многоугольников к площади искомой окружности. Связь между тригонометрическими функциями и алгебраическими выражениями основана на связи с окружностью единичного радиуса, и я думаю будет излишне, эту связь объяснять. Без применения двух выше указанных методов (тригонометрии и приближении к площади окружности), формулы вычисления числа $\pi$ просто не может существовать. Ибо без определения связи между числом $\pi$ и длиной чего либо его вычисление просто не имеет смысла. Иначе, назвав число $\pi$ суммой углов треугольника, его тоже можно будет вычислить и оно будет ровно 180^{\circ}(для очень умных следует добавить, что это будет справедливо только в случае евклидовой геометрии, а то опять укажут такое число $\pi$ будет не всегда равно 180^{\circ}). Правда, запись тригонометрических формул, подозреваю, станет не очень удобной.

 Профиль  
                  
 
 Re: К вопросу о форме Вселенной
Сообщение03.12.2013, 08:44 
Заслуженный участник
Аватара пользователя


23/07/05
18040
Москва
Видите ли, само собой разумеется, что для каждой из приведённых формул имеется доказательство того, что она даёт именно то самое $\pi$, которое определяется как отношение длины окружности к длине её диаметра в евклидовой геометрии. Но это не означает, что члены этих формул так уж непосредственно связаны с тригонометрическими функциями или с приближениями окружности многоугольниками.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 100 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7  След.

Модераторы: photon, whiterussian, Jnrty, Aer, Парджеттер, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Dmitriy40


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group