Есть макроскопические явления, которые не надо квантовать, например, океанские волны. При этом я имею ввиду наложнеие соотношения
, а не дискретность спектра, как бывает в резонаторах.
Например, поле излучения квантуется, а ближнее поле нет.
Цитата:
Ближнее поле вообще не составляет физической системы в описанном смысле. Оно попросту есть функция положения и движения зарядов.
Поле излучения - вообще-то тоже. Квантуют электромагнитное поле, причём в двух вариантах: свободное электромагнитное поле (поле в вакууме), и взаимодействующее с зарядами. Первое иногда называют "квантованием поля излучения" (хотя я даже не помню приличного учебника, где бы это было).
Свободное поле в вакууме подразумевается поперечным и тогда представляет собой излученное поле вдали от источника (ближнее поле вдали уже отсутствует).
Если подобраться поближе к источнику, то там поле в вакууме будет иметь и продольные, и поперечные компоненты, определяемые
граничными условиями (источник-то мы не пишем в свободных уравнения в данном случае). Так вот, квантуется только поперечное поле, соответствующее излучению.
Здесь я бы сказал иначе: из уравнений Максвелла следует, что любое ускорение ведет к излучению, то есть, к неупругому поведению, скажем, сталкивающихся частиц, а это и есть диссипация на фундаментальном уровне.
Цитата:
Нет. В том-то и дело, что на фундаментальном уровне это не диссипация (безвозвратная потеря энергии), а передача энергии от заряженных частиц к полю. Она может быть получена обратно, например, другими заряженными частицами. Полная фундаментальная теория (описывающая заряженные частицы и поле) бездиссипативна, фазовый объём в ней сохраняется, и квантовая эволюция унитарна.
На самом деле дело не в фазовом объеме, а в практической невозможности обратить процесс. И по причине малости энергии излучения, всегда присутствующее поле в начальном состоянии тоже не учитывается. Так что реально огромный фазовый объем поля не изменяется (как бы, выпадает) в нулевом приближении. И вначале мы работаем только с фазовым объемом частиц без поля.
Цитата:
Правда, потерянная энергия очень часто бывает мала и кажется, что процессы обратимы. Так, собственно, и получают в нулевом приближении - безизлучательные (упругие) сечения рассеяния.
Цитата:
Вот только унитарность сохраняется и дальше, во всех порядках.
Унитарность и неупругие процессы не связаны друг с другом. Фокус в том что в нулевом приближении мы получаем только упругий процесс, а точное решение дает только неупругий процесс. Возьмем электрон в покое и отсутствие поля излучения в начальном состоянии (мишень). После толчка чем нибудь, электрон полетит и возникнет и поле излучения, то есть мишень возбудилась. Это неупругий процесс, который практически невозможно обратить из-за получающегося бесконечного сложного конечного состояния. Конечно, энергия излучения может быть получена "обратно" другими зарядами, но речь идет не о сохранении полной энергии, а о практической обратимости. В неупругих столкновениях унитарность есть всегда и даже энергия сохраняется, но ее часть попадает во "внутреннюю" энергию мишени, в данном случае, очень сложной мишени (у поля очень много степеней свободы).
-- 06.09.2013, 23:27 --Я бы сказал так: квантованы только те волновые ЭМ поля, которые излучаются за счет перехода электронов из одного устойчивого состояния в другое. ЭМ же поля, излучаемые за счет ускоренного движения ансамбля электронов, не квантованы.
Нет, излучается всегда много фотонов; и переход из одного дискретного уровня на другой тоже сопровождается излучением не одного, а многих фотонов (волновой пакет все-таки конечен по длине), просто основную энергию несет "главный" фотон с
.