2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 02:24 
Здравствуйте! Помогите разобраться, пжлст :).

Есть свойство дисперсии случ. величины, гласящее: Д. случ. величины равна разности между мат. ожиданием квадрата случ. величины и квадратом её мат. ожидания:

$D(X)=M(X^2)-[M(X)]^2$

Вопрос: ПОЧЕМУ правая часть не равна нулю? :)

Ведь есть свойство : $M(X\cdot Y)=M(X)\cdot M(Y)$, а значит, $M(X^2)=M(X)\cdot M(X)=[M(X)]^2$

Где туплю?...

-- 28.08.2013, 02:44 --

Видимо, ту же ошибку допускаю... Само определение дисперсии (что это мат. ожидание квадрата её отклонения от мат. ожидания), как я понял, вынуждено обратиться к этому квадрату, так как без него это будет ноль ($M[X-M(X)]=0$)

И я снова не вижу разницы :(. Что меняется? Ну, берём мы в квадрат: $M[X-M(X)]^2$, и получается по свойству перемножения, что я упомянул в предыдущем посте, что это выражение равно $[M(X-M(X))\cdot M(X-M(X))]$, то есть, снова равно нулю. Что я упускаю и в первом случае, и тут?

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 05:10 
Аватара пользователя
Pe4orin в сообщении #758272 писал(а):
Ведь есть свойство : M(X*Y)=M(X)*M(Y)

Нет такого свойства. Есть $M[\lambda X]=\lambda M[X]$.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 05:43 
Pe4orin в сообщении #758272 писал(а):
Ведь есть свойство : $M(XY)=M(X)M(Y)$, а значит, $M(X^2)=M(X)M(X)=\left(M(X)\right)^2$
А требования независимости случайных величин разве нет в этом свойстве?

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 09:34 
Аватара пользователя
 i  Тема перемещена в Карантин.

Запишите формулы в соответствии с требованиями Правил форума, т.е. в $\TeX$.
Краткие инструкции можно найти здесь: topic8355.html и topic183.html.
Кроме этого, в теме Видео-пособия для начинающих форумчан можно посмотреть видео-ролик "Как записывать формулы".

После того как исправите сообщение, сообщите об этом в теме Сообщение в карантине исправлено.

 
 
 
 Posted automatically
Сообщение28.08.2013, 16:49 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Причина переноса: вернул
Обратите внимание на знак умножения

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 17:16 
что со знаком умножения?

на счёт независимости - всё из-за неё? и от этого $M(X^2)$ не будет равно $[M(X)]^2$? Как это увидеть?

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 17:20 
Аватара пользователя
Pe4orin в сообщении #758459 писал(а):
Как это увидеть?

Взять величину попроще (например, такую: принимает значения 1 и 2, каждое в 50% случаев), посчитать пальцами.

-- менее минуты назад --

Pe4orin в сообщении #758459 писал(а):
на счёт независимости - всё из-за неё?
Всё из-за того, что такого свойства тупо нет. Нет его, вообще. Нет такого закона, что в 14:00 слоны идут в магазин за водкой. Некоторые, правда, идут, но на то нужны особые обстоятельства.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 17:24 
Аватара пользователя
Матожидание произведения равно произведению матожиданий для некоррелированных случайных величин.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 17:25 
Аватара пользователя
Евгений Машеров в сообщении #758469 писал(а):
для некоррелированных

Вот это и есть особые обстоятельства. Я бы их на первое место ставил, а то утверждение запоминается без них.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение28.08.2013, 19:49 
Аватара пользователя
Pe4orin
Чтобы понять, почему правая часть не равна нулю, давайте рассмотрим случайную величину, принимающую с равными вероятностями значения -1 и +1. Её матожидание, очевидно, 0. Но при этом квадрат этой величины всегда равен 1, и матожидание квадрата - единица.

Вообще, для матожидания произведения $Mxy$ можно представить x и y в виде суммы константы и случайной величины с нулевым матожиданием $x=M_x+\xi$ и $y=M_y+\zeta$
Тогда $Mxy=M_xM_y+M_xM(\xi)+M(\zeta)M_y+M(\xi\zeta)$
Второе и третье слагаемое по условию нули, а четвёртое при некоррелированности ноль, а вот при отсутствии некоррелированности - может быть чем угодно.
Независимость - условие более сильное, могут быть некоррелированные зависимые величины, так что для некоторых зависимых величин матожидание произведения есть произведение матожиданий, лишь бы была некоррелированность.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение31.08.2013, 04:04 
Евгений, не сразу понял, как получается квадрат, и увидел потом в учебнике Кремера, что квадрат величины - это величина, принимающая значения, возведённые в квадрат, с теми же вероятностями.. Тогда ясно откуда единица.. И по-прежнему не ясно, почему при перемножении двух независимых величин вероятности перемножаются, а тут остаются прежними.. Про коррелированность там вовсе не идёт речь, во всяком случае, на страницах, где я знакомлюсь с этими свойствами, поэтому я пока не в курсе, что это. Видимо, пока надо принять тупо..

Дальше, там где Вы пишете, что случ. величину X можно представить как сумму константы и случ. величины, а дальше идёт сумма величины $\xi$ и мат.ожидания величины X.. А почему так можно представить? Прошу прощения.. я только вникаю.. и мне это не очевидно.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение31.08.2013, 04:12 
Аватара пользователя
Pe4orin в сообщении #759159 писал(а):
И что вообще значит: квадрат этой величины всегда равен 1?
Это значит, что $(-1)^2=1^2=1$. Помедитируйте над этим фактом, а там, глядишь, и остальное понятнее станет.

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение31.08.2013, 08:00 
Аватара пользователя
Ну, так оба сомножителя у нас - одинаковы. А величина от самой себя, согласитесь, зависит. Вот и не работает "правило".

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение31.08.2013, 15:55 
Евгений, спасибо. А почему можно величину Х представить как сумму её мат.ожидания и любой величины с нулевым мат.ожиданием? (если я правильно понял)

 
 
 
 Re: Вопрос про свойство дисперсии случ. величины
Сообщение31.08.2013, 16:11 
Pe4orin в сообщении #759285 писал(а):
А почему можно величину Х представить как сумму её мат.ожидания и любой величины с нулевым мат.ожиданием? (если я правильно понял)

Рассмотрите частный случай уже центрированной случайной величины. Можно ли её представить как любую другую?...

 
 
 [ Сообщений: 24 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group