Просмотрела тему на тех страницах, где мы искали наименьший пандиагональный квадрат 6-го порядка из простых чисел.
.
И до сих пор задача актуальна.
и запустила. Невероятно! Программа работает уже полчаса и нарисовала только одну точку (а должна нарисовать 35 точек).
, что для массива, состоящего ровно из 36 чисел, программа работает секунды (правда, это было для чисел Смита).
Что-то я ничего не понимаю. Почему программа для данного массива работает так долго
Может быть, по той причине, что простые числа обладают замечательными аддитивными свойствами, в отличие от чисел Смита?
.
Но в этом случае задавала массив не из 36 чисел, а с запасом, чтобы проверились все потенциальные массивы чисел.
Результат такой же: программа работает очень долго, так и не дождалась результата, но программа не "сказала" ещё, что решения нет.
есть один нюанс: по-моему, он не использует число 3.
И совершенно напрасно! В квадрате, построенном Radko, число 3 присутствует.
Вот первый потенциальный массив простых чисел:
Код:
3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 163 191
сумма всех чисел массива равна 2628. Массив даёт МК с магической константой 438.
Таких наборов несколько:
Код:
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 157, 197]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 163, 191]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 173, 181]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 173, 179]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 157, 167, 179]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 163, 167, 173]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 163, 179]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 157, 163, 173]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 139, 149, 151, 167, 173]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 173]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167]
Поэтому имеет смысл строить квадрат из их объединения (содержащего 43 элемента):
Код:
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 197]
То есть проверить надо массив из 43 простых чисел, чтобы окончательно убедиться в несуществовании пандиагонального квадрата 6-го порядка с магической константой
.