2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11 ... 20  След.
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 17:38 
Аватара пользователя
Уважаемый ИСН, я так привык считать, что в любой дискуссии по математике, если кто-то критикует высказывание другого участника, то он должен это делать аргументированно, точнее контраргументированно. Например, приведите мне пример опровергающий моё утверждение. Вы же сами меня так натаскивали в другой теме :wink: Или пусть не контрпример, а общий теоретический подход, который бы противоречил моим высказываниям. И потом, я проверил не на одной формуле, а на нескольких. К сожалению общей теории по асимптотическим плоскостям никто мне не дал (видимо потому, что её нет пока), вот и приходится опираться на конретные примеры.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 17:40 
Shtorm в сообщении #586025 писал(а):
даже невооружённом глазом видно, что все нормальные кривизны будут равны нулю. Ну хорошо, а как из определения, данного через нормальные кривизны
А вот если бы Вам анализ крови делали невооружённым глазом, Вы бы согласились?
Вы даже не умеете целенаправленно придумать контрпример своим гипотезам. Глаз вооружить.
Я не давал определений "через нормальные кривизны".
И не надо цитат с возражениями-доказательствами: Вы читать по математике не умеете.
Всем с вооружёнными глазами давно очевидно, что всё это ерунда.

-- 17 июн 2012, 18:49:30 --

Shtorm в сообщении #586046 писал(а):
что в любой дискуссии по математике,
Здесь нет дискуссии по математике. Я даже сразу и не соображу, как называется это по математике. Но не дискуссия.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 17:52 
Аватара пользователя
Алексей К. в сообщении #586047 писал(а):
Вы даже не умеете целенаправленно придумать контрпример своим гипотезам. Глаз вооружить.


Я так полагаю, что Вы уже придумали, контрпример, где бы не действовали "мои формулы" и сопутствующие гипотезы?

Алексей К. в сообщении #586047 писал(а):
Всем с вооружёнными глазами давно очевидно, что всё это ерунда.


А по-конкретнее можно, что именно ерунда?

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 18:11 
Аватара пользователя
К утверждению "на бесконечности, все овраги, холмы и изломы должны уплощаться", как я его понял (или сформулируйте строго), очевидным контрпримером является Ваш собственный там же приведённый пример. А график врёт.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 18:28 
Аватара пользователя
ИСН в сообщении #586054 писал(а):
К утверждению "на бесконечности, все овраги, холмы и изломы должны уплощаться", как я его понял (или сформулируйте строго), очевидным контрпримером является Ваш собственный там же приведённый пример. А график врёт.


Да, Вы правы, увеличил масштаб на нужных участках и увидел холмы. Ну хорошо, тогда так рассуждаем: при стремлении к бесконечности - высота холмов и глубина оврагов стремится к нулю, следовательно вся поверхность стремится к плоскости, если так можно сказать.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 18:45 
Аватара пользователя
Высота холмов никуда не стремится. Она тупо бесконечна.

-- Вс, 2012-06-17, 19:46 --

(Не у всех холмов, разумеется, а только у тех, которые вдоль осей.)

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 19:43 
Аватара пользователя
ИСН в сообщении #586067 писал(а):
Высота холмов никуда не стремится. Она тупо бесконечна.
(Не у всех холмов, разумеется, а только у тех, которые вдоль осей.)


Да, и правда график врёт. Только высота не тупо бесконечна на осях, а периодически скачет к значению 1 - когда синус обращается в нуль. А Maple демонстрирует мне убывающие холмы - те, которые непосредственно прилегают к осям, но не лежат на осях.
Мда...рассмотрел ещё похожие функции двух переменных и убедился в том, что и "формулы мои" не всегда работают. Надо всё пересматривать.
Вот - критика подействовала, спасибо ИСН и Алексей К..
Главное - это познать истину!

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 20:03 
Аватара пользователя
Если у Вас функция отличается той, которая написана на предыдущей странице, то я не знаю, что там происходит; может быть что угодно. Может, она и правда скачет к 1 (если, например, сверху произведение синусов).

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 20:19 
Аватара пользователя
А да, точно. Это я подумал, что неопределённость нуль делить на нуль в этой функции сразу даёт первый замечательный предел, а забыл о том, что 1 ещё раз делится на 0.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 20:29 
Аватара пользователя
Короче, я Вас убедил, что (по крайней мере иногда) на бесконечности не всё уплощается?

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 20:48 
Аватара пользователя
ИСН в сообщении #586121 писал(а):
Короче, я Вас убедил, что (по крайней мере иногда) на бесконечности не всё уплощается?


А погодите-ка, погодите-ка, я вот тут все смотрел, смотрел на этот график

$z=\frac {\sin(x)+\sin(y)}{xy}$


И всё же пришёл к выводу, что просто напросто выкалывается ось OX и ось OY. То есть на бесконечность улетают только точки над осями. А уже соседние с ними точки на бесконечность не улетают - а принимают небольшие определённые значения, стремящиеся к нулю при стремлении соответствующей оси к бесконечности. Потому, Maple так мне и нарисовал. И, как бы программа изобразила мне точки на бесконечности, если непосредственно к ним ничего не прилегает?

Да, Вы меня убедили, что на бесконечности не всё уплощается и не всегда.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 21:32 
Shtorm в сообщении #586129 писал(а):
И всё же пришёл к выводу, что просто напросто выкалывается ось OX и ось OY.

Замените $x\to3x-y,\quad y\to 2x+y$, и что-то другое будет выкалываться. Или прикалываться.

 
 
 
 Re: Асимптотическая плоскость
Сообщение17.06.2012, 21:39 
Аватара пользователя
Shtorm в сообщении #586129 писал(а):
А уже соседние с ними точки на бесконечность не улетают - а принимают небольшие определённые значения, стремящиеся к нулю при стремлении соответствующей оси к бесконечности.

Какое небольшое значение принимает функция в точке (не на оси) $x=10^{-12},\,y=10^6$?
Или я недостаточно далеко отошёл?
Ладно, какое небольшое значение она принимает в точке $x=10^{-24},\,y=10^{12}$?

 
 
 
 Re: Асимптотическая плоскость
Сообщение18.06.2012, 15:08 
Аватара пользователя
ИСН в сообщении #586146 писал(а):
Какое небольшое значение принимает функция в точке (не на оси) $x=10^{-12},\,y=10^6$?
Или я недостаточно далеко отошёл?
Ладно, какое небольшое значение она принимает в точке $x=10^{-24},\,y=10^{12}$?


Да, Вы совершенно правы, я какую-то чушь написал. Но неужели Maple так чудовищно врёт? Как его (пакет этот) вообще пропустили к использованию? :lol: :evil:

-- Пн июн 18, 2012 15:13:19 --

Алексей К. в сообщении #586143 писал(а):
Shtorm в сообщении #586129 писал(а):
И всё же пришёл к выводу, что просто напросто выкалывается ось OX и ось OY.

Замените $x\to3x-y,\quad y\to 2x+y$, и что-то другое будет выкалываться. Или прикалываться.


Да, но что это доказывает? То, что асимптотической плоскости нет в таких функцих? Как же теперь быть? Может следует тогда сказать так, что если поверхность имеет асимптотическую плоскость, то при удалении на бесконечность, она не должна иметь никаких точек разрывов, "линий разрывов" или я не прав?

 
 
 
 Re: Асимптотическая плоскость
Сообщение18.06.2012, 15:34 
Аватара пользователя
Maple обычно используют люди, которые знают пределы его возможностей. Сам-то он - не замена для простого человеческого здравого смысла. И никто не замена.
Асимптотическая плоскость согласно определению Алексея К. тут есть, несмотря на точки и - да - целые линии разрывов.

 
 
 [ Сообщений: 297 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11 ... 20  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group