2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 7  След.
 
 Один вопрос про связность.
Сообщение19.03.2012, 21:34 
Правильно ли я понимаю, связность общего вида
$\[{\nabla _i}{e_k} = \Gamma _{ki}^l{e_l}\]$ - это тензор?

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 21:48 
что именно тензор? на всякий случай $\Gamma^i_{jk}$ не тензор

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 21:53 
m@x в сообщении #550122 писал(а):
Правильно ли я понимаю, связность общего вида
$\[{\nabla _i}{e_k} = \Gamma _{ki}^l{e_l}\]$ - это тензор?

Да.

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 21:54 
Да, я имею ввиду коэффициенты связности общего вида. Или оператор ковариантной производной.

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:02 
Аватара пользователя
m@x в сообщении #550122 писал(а):
$\[{\nabla _i}{e_k} = \Gamma _{ki}^l{e_l}\]$

Что это?

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:05 
Простите, я вас не понял. Я привел определение коэффициентов $\[\Gamma _{ki}^l\]$.

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:05 
Утундрий в сообщении #550134 писал(а):
m@x в сообщении #550122 писал(а):
$\[{\nabla _i}{e_k} = \Gamma _{ki}^l{e_l}\]$

Что это?

специально для продвинутых: это определение символов Кристоффеля через ковариантные производные от базисных векторов на многообразии. Идите Дубровина-Новикова-Фоменку читать, эрудированный вы мой :mrgreen:

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:07 
Аватара пользователя
Oleg Zubelevich
Прочь, я сегодня в отвратительном настроении.

m@x
Спрошу еще раз: вы это называете "связностью общего вида"?

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:09 
m@x в сообщении #550122 писал(а):
Правильно ли я понимаю, связность общего вида
$\[{\nabla _i}{e_k} = \Gamma _{ki}^l{e_l}\]$ - это тензор?



Поскольку в частном случае римановой геометрии (связность, порождаемая метрикой) символы Кристоффеля это не тензор, то в общем случае и подавно не тензор.

Собственно добавка в ковариантной производной членов со связностью и нужна для того, чтобы компенсировать нетензорную часть обычной производной. Ясно, что нетензорную часть нельзя скомпенсировать добавкой тензора.

-- Вт мар 20, 2012 02:12:44 --

Утундрий в сообщении #550139 писал(а):
это определение символов Кристоффеля через ковариантные производные от базисных векторов



Вы случаем не перепутали обычные производные с ковариантными? Вот если под намблой понимать обычную производную, то символы Кристоффеля можно определить именно так. Иначе это не символы Кристоффеля.

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:13 
Утундрий в сообщении #550139 писал(а):
Oleg Zubelevich
Прочь, я сегодня в отвратительном настроении.

m@x
Спрошу еще раз: вы это называете "связностью общего вида"?

не надо суетиться, невежество вы уже обнаружили, попытки перевести разговор на обсуждение абстрактных связностей вам не помогут, вы там только сильнее поплывете

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:18 
Аватара пользователя
Alex-Yu
Oleg Zubelevich
Оки, объясняйте m@x-у сами, а я погляжу.

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:21 
Alex-Yu в сообщении #550140 писал(а):
Вы случаем не перепутали обычные производные с ковариантными? Вот если под намблой понимать обычную производную, то символы Кристоффеля можно определить именно так. Иначе это не символы Кристоффеля.

:mrgreen:
Изображение

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:25 
Alex-Yu в сообщении #550140 писал(а):
Поскольку в частном случае римановой геометрии (связность, порождаемая метрикой) символы Кристоффеля это не тензор, то в общем случае и подавно не тензор.

Это верно только для аффинной связности с нулевым кручением. В общем случае нет.
$\[\Gamma _{\nu \rho }^\mu  = \left\{ \begin{array}{l}
 \mu  \\ 
 \nu \rho  \\ 
 \end{array} \right\} - \frac{1}{2}S_{\nu \rho }^\mu  - {g^{\mu \omega }}{g_{\sigma (\nu }}{S^\sigma }_{\rho )\omega }\]$

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:34 
Аватара пользователя
Мне вот любопытно, вы всерьез вознамерились очередным пинусомерием заняться страниц на двадцать, не дожидаясь реакций ТС? Темка-то, промежду нами говоря, вполне себе учебненькая и тому кто первый вывалит стандартный закон преобразования коэффициентов связности вполне могут впаять предупреждение. Но это только обостряет процесс мерянья пинусами, не правда ли? :mrgreen:

 
 
 
 Re: Один вопрос про связность.
Сообщение19.03.2012, 22:37 
Oleg Zubelevich в сообщении #550149 писал(а):
Alex-Yu в сообщении #550140 писал(а):
Вы случаем не перепутали обычные производные с ковариантными? Вот если под намблой понимать обычную производную, то символы Кристоффеля можно определить именно так. Иначе это не символы Кристоффеля.

Я как раз и имел ввиду под намблой ковариантную производную. То есть я говорю не про симметричные символы Кристоффеля. Поэтому и спрашиваю, а то так не совсем понятно.

 
 
 [ Сообщений: 91 ]  На страницу 1, 2, 3, 4, 5 ... 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group