2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение20.05.2011, 20:40 
Заслуженный участник


20/12/10
8858
scwec в сообщении #448033 писал(а):
Для nnosipov: Дорогой друг: зайдите лучше с другой стороны. Ведь уравнения Пелля - территория изъезженная кругом.
Вот и Вы попались на эту удочку.
Я предложил подход совершенно нехоженный, а вдруг получится?
Успеха Вам. Мне кажется у Вас получится.

Почти уверен, что в PARI/GP ранг (и всё остальное, что нужно) Вашей кривой будет найден, так что в принципе проблемы нет. Но хочется обойтись без этих непростых вещей. Уравнения Пелля, конечно, вещь популярная, а вот единицы в неполных модулях полей алгебраических чисел --- не очень. Я бы с бОльшим удовольствием здесь покопался. Впрочем, не будучи специалистом в этих областях, не берусь судить, какой взгляд на нашу "детскую" задачу правильный.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение20.05.2011, 20:48 
Модератор
Аватара пользователя


11/01/06
5665
scwec в сообщении #448006 писал(а):
Легко видеть, что речь идет о решении уравнения $x^4-10x^2y^2+y^4=1$.
$(x,y)=1$, $xy$=чет.
Что нам известно об этом уравнении?
Практически ничего.

Вообще-то это уравнение Туэ - и его решениями, согласно PARI/GP, являются лишь $(0,\pm 1)$ и $(\pm 1,0)$:
Код:
? thue(thueinit(x^4 - 10*x^2 + 1),1)
%1 = [[0, 1], [0, -1], [1, 0], [-1, 0]]


-- Fri May 20, 2011 12:51:38 --

А вообще по поводу решения системы уравнений:
$$\begin{cases} ax^2 + 1 = y^2\\ bx^2 + 1 = z^2\end{cases}$$
для заданных $a, b$ - см. Теорему 6 в моей статье http://arxiv.org/abs/1002.1679

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение20.05.2011, 21:35 
Заслуженный участник


20/12/10
8858
maxal, мне припоминается ещё некий метод Сколема (но, возможно, я что-то путаю). Похоже, сколь-нибудь элементарного решения задача не имеет. Или Вы можете привести пример таких $a$ и $b$, для которых можно обойтись более-менее элементарными средствами?

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение20.05.2011, 21:58 
Модератор
Аватара пользователя


11/01/06
5665
nnosipov в сообщении #448133 писал(а):
мне припоминается ещё некий метод Сколема

Вероятно, этот: http://www.math.uoc.gr/~tzanakis/Papers ... Skolem.pdf
nnosipov в сообщении #448133 писал(а):
Или Вы можете привести пример таких $a$ и $b$, для которых можно обойтись более-менее элементарными средствами?

Моя статья вполне элементарна, если доверить решение уравнений Туэ PARI/GP.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение20.05.2011, 22:05 
Заслуженный участник


20/12/10
8858
maxal в сообщении #448142 писал(а):
Моя статья вполне элементарна, если доверить решение уравнений Туэ PARI/GP.

Решение уравнений Туэ и есть самое интересное. Вот, например, уравнение $x^4-6x^2y^2+y^4=1$ исследуется элементарно.

Да, что-то вроде этого http://www.math.uoc.gr/~tzanakis/Papers ... Skolem.pdf я и имел в виду. Спасибо за ссылку.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение20.05.2011, 22:57 
Модератор
Аватара пользователя


11/01/06
5665
maxal в сообщении #448114 писал(а):
А вообще по поводу решения системы уравнений:
$$\begin{cases} ax^2 + 1 = y^2\\ bx^2 + 1 = z^2\end{cases}$$
для заданных $a, b$ - см. Теорему 6 в моей статье http://arxiv.org/abs/1002.1679

При условии, что $ab$ не является квадратом, эта система сводится к набору уравнений Туэ относительно $m,n$ вида:
$$(a-b)^2 m^4 - 2(a+b)m^2n^2 + n^4 = q^2,$$
где $q$ пробегает делители числа $2(a-b)$. Соответственно, количество решений в этом случае конечно. Исходные переменные выражаются так:
$$\begin{cases} x = \frac{2mn}{q} \\ y= \frac{(a-b)m^2 + n^2}{q} \\ z = \frac{(a-b)m^2-n^2}{q}\end{cases}$$

Если $ab=s^2$ является квадратом, то уравнение 4-й степени разваливается на два множителя:
$$(n^2 - (a+b+2s)m^2)\cdot (n^2 - (a+b-2s)m^2) = q^2$$
и все сводится к нескольким системам линейных уравнений относительно $m^2$ и $n^2$.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 08:42 
Заслуженный участник


20/12/10
8858
Случай $ab=s^2$ был очевиден с самого начала. Непонятно, почему его Руст исключил.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 13:41 
Модератор
Аватара пользователя


11/01/06
5665
nnosipov в сообщении #448146 писал(а):
Решение уравнений Туэ и есть самое интересное. Вот, например, уравнение $x^4-6x^2y^2+y^4=1$ исследуется элементарно.

Это не уравнение Туэ, так как многочлен раскладывается на множители:
$$x^4-6x^2y^2+y^4=(x^2 + 2xy - y^2) (x^2 - 2xy -y^2)$$
По определению в уравнении Туэ многочлен обязан быть неприводимым.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 15:43 
Заслуженный участник


17/09/10
2133
Конечно, RAPI/GP - хорошая вещь, но то, что $x^4-10x^2y^2+y^4=1$ не имеет решения в натуральных числах все же надо доказать.
Нельзя же результат калькулятора считать доказательством.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 15:55 
Модератор
Аватара пользователя


11/01/06
5665
scwec в сообщении #448357 писал(а):
Нельзя же результат калькулятора считать доказательством.

Не проблема - возьмите статью с описание алгоритма, используемого в PARI/GP, и проделайте все вычисления вручную...
http://dx.doi.org/10.1006/jnth.1996.0129

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 16:18 
Заслуженный участник


20/12/10
8858
maxal в сообщении #448314 писал(а):
nnosipov в сообщении #448146 писал(а):
Решение уравнений Туэ и есть самое интересное. Вот, например, уравнение $x^4-6x^2y^2+y^4=1$ исследуется элементарно.

Это не уравнение Туэ, так как многочлен раскладывается на множители:
$$x^4-6x^2y^2+y^4=(x^2 + 2xy - y^2) (x^2 - 2xy -y^2)$$
По определению в уравнении Туэ многочлен обязан быть неприводимым.

Пардон, перепутал с уравнением $x^4+6x^2y^2+y^4=z^2$.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 19:24 
Заслуженный участник


17/09/10
2133
maxal в сообщении #448359 писал(а):
Не проблема - возьмите статью с описание алгоритма, используемого в PARI/GP, и проделайте все вычисления вручную...

Уже взял, уже проделал и теперь не нарадуюсь.

Для nnosipov: может будет интересно следующее. Выражения $m^4+6m^2n^2+n^4$ и $|m^4-6m^2n^2+n^4|$ при $m{\ne}n$ обязательно являются конгруэнтными числами и поэтому не могут быть квадратами.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение21.05.2011, 20:49 
Заслуженный участник


20/12/10
8858
scwec в сообщении #448444 писал(а):
Для nnosipov: может будет интересно следующее. Выражения $m^4+6m^2n^2+n^4$ и $|m^4-6m^2n^2+n^4|$ при $m{\ne}n$ обязательно являются конгруэнтными числами и поэтому не могут быть квадратами.

Да, именно так.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение22.05.2011, 08:11 


23/01/07
3427
Новосибирск
nnosipov в сообщении #447983 писал(а):
Речь идёт о существенно более сложной задаче: при каких $n$ числа $2n^2+1$ и $3n^2+1$ будут квадратами. Весьма вероятно, что таких $n$ нет, однако доказательство не обещает быть простым.

Произведение указанных чисел также должно быть квадратом:

$(2n^2+1)(3n^2+1)=m^2$

$6n^4+5n^2+1=m^2$

Далее тщетно ищем подходящие остатки по основанию $5$.

 Профиль  
                  
 
 Re: 2n^2+1, 3n^2+1, 6n^2+1, и все они - квадраты?
Сообщение22.05.2011, 08:19 
Заслуженный участник


09/02/06
4382
Москва
Это означает только, что n делится на 5.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 97 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: segad87767


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group