2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Задачки по группам (Винберг)
Сообщение07.03.2011, 21:13 
5.4.
Докажите, что гомоморфный образ циклической группы -- циклическая группа.

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение07.03.2011, 23:06 
Аватара пользователя
VAL в сообщении #420186 писал(а):
А во-вторых, никто ведь и не утверждает, что факторизация - это деление. Речь идет о неком аналоге.

Как насчет термина "разбиение"? Фактормножетсво - всегда разбиение исходного множества.

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение08.03.2011, 11:29 
Аватара пользователя
Padawan в сообщении #420405 писал(а):
5.4. Докажите, что гомоморфный образ циклической группы -- циклическая группа.

Пусть $G=\langle g\rangle$ -- циклическая, $f\colon G\to K$ -- гомоморфизм групп. $G$ состоит из целых степеней $g$, а $g^n\mapsto (f(g))^n$, поэтому $\mathrm{im}\,f=\langle f(g) \rangle$.

Пусть $H\subseteq G$ -- нормальная подгруппа. Есть гомоморфизм $f$, для которого $H$ будет ядром. По теореме о гомоморфизме $G/H\simeq \mathrm{im}\,f$. Из предыдущего абзаца следует, что $G/H$ циклическая. Так?

А где в моём прошлом доказательстве ошибка? Дело в том, что эта задача приводится до параграфа о гомоморфизмах и теоремах о нём.

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение10.03.2011, 14:23 
Аватара пользователя
Вопрос. В обозначении $f:A\to B$, $A=\mathrm{dom}\,f$-- область определения, $f(A)=\mathrm{im}\,f$ -- область значений, а как называется $B$?

Повторю ещё вопрос, затерявшийся на энной странице: как обозначается множество правых смежных классов группы $G$ под подгруппе $H$?

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение10.03.2011, 16:55 
caxap в сообщении #421416 писал(а):
Вопрос. В обозначении $f:A\to B$, $A=\mathrm{dom}\,f$-- область определения, $f(A)=\mathrm{im}\,f$ -- область значений, а как называется $B$?
Встречается (но не общепринято) название "область прибытия".
Цитата:
Повторю ещё вопрос, затерявшийся на энной странице: как обозначается множество правых смежных классов группы $G$ под подгруппе $H$?
AFAIR, я не встречал какого-то специального обозначения или термина. (Но если все эти правые смежные классы являются одновременно и левыми, то и обозначение, и термин предусмотрены :D )

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение10.03.2011, 17:05 
Аватара пользователя
VAL
А почему правые классы так обделены по сравнению с левыми? (Не только в обозначениях. В учебниках правым классам почти не уделяют внимание, всё о левых, да о левых...)

-- 10 мар 2011, 17:07 --

VAL в сообщении #421473 писал(а):
(Но если все эти правые смежные классы являются одновременно и левыми, то и обозначение, и термин предусмотрены )

Какие?

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение10.03.2011, 20:49 
caxap в сообщении #421480 писал(а):
VAL
А почему правые классы так обделены по сравнению с левыми? (Не только в обозначениях. В учебниках правым классам почти не уделяют внимание, всё о левых, да о левых...)
Ну почему же? Я встречал книжки, где рассматриваются именно правые смежные классы. А потом сообщается, что для левых все аналогично.
Ясно, что тупо рассматривать и те и другие (два раза делая одно и то же) смысла нет. А какие именно рассмотреть подробно - это дело вкуса.
Цитата:
VAL в сообщении #421473 писал(а):
(Но если все эти правые смежные классы являются одновременно и левыми, то и обозначение, и термин предусмотрены )

Какие?
Здрассьте-е-е!
Обозначение - $G/H$, а термин - факторгруппа.

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение10.03.2011, 21:20 
Аватара пользователя
Да, извиняюсь, я иногда не подумав пишу :oops:

 
 
 
 
Сообщение29.03.2011, 10:11 
Аватара пользователя
Верна ли теорема Лагранжа для бесконечных групп? Т. е. пусть мощности $G$, $G/H$, $H$ равны соответственно $\mathfrak {a,b,c}$. Верно ли, что $\mathfrak {a=bc}$?

 
 
 
 
Сообщение29.03.2011, 11:29 
Верна.

 
 
 
 
Сообщение29.03.2011, 13:13 
Аватара пользователя
Padawan
Спасибо. А законно ли здесь стандартное доказательство, которое для конечных групп (мощность каждого смежного класса равна $|H|$, но смежные классы образуют разбиение $G$, поэтому $|G|=|G/H|\cdot |H|$).

Не подскажите, в каких книжках эта общая теорема приводится? В Винберге и Кострикине $G$ конечна.

 
 
 
 Re:
Сообщение29.03.2011, 13:27 
caxap в сообщении #428693 писал(а):
А законно ли здесь стандартное доказательство, которое для конечных групп (мощность каждого смежного класса равна $|H|$, но смежные классы образуют разбиение $G$, поэтому $|G|=|G/H|\cdot |H|$).

А Вы сами как думаете?
Цитата:
Не подскажите, в каких книжках эта общая теорема приводится? В Винберге и Кострикине $G$ конечна.

С. Ленг Алгебра.

 
 
 
 
Сообщение29.03.2011, 14:48 
Аватара пользователя
Padawan в сообщении #428695 писал(а):
А Вы сами как думаете?

Я думаю, что законно. $G$ разбивается из $|G/H|$ множеств мощности $|H|$, поэтому $|G|=|G/H|\times |H|$.

Padawan в сообщении #428695 писал(а):
С. Ленг Алгебра.

Не подскажите страницу? Я нашёл только предложение 1 на стр. 24 (советское издание, оно одно). Там для конечных мощностей только.

 
 
 
 
Сообщение29.03.2011, 15:40 
Ну я про это место и говорю. Просто я когда читал мне казалось, что произвольные мощности рассматривается, а про конечные мощности и делитель -- просто как замечание. Там и более общая формула приведена $(G:H)(H:K)=(G:K)$.
И да, индекс подгруппы $(G:H)$ имеет смысл, для любой погруппы $H\subset G$, не обязательно нормальной.

 
 
 
 Re: Задачки по группам (Винберг)
Сообщение29.04.2011, 14:47 
Аватара пользователя
Что такое размерность группы?

 
 
 [ Сообщений: 68 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group