2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 12:00 
Аватара пользователя
В.О. в сообщении #349481 писал(а):
Что будет в полдень, это вопрос не математический.

В этой задаче его можно заменить другим - что будет через минуту после перекладывания первого шара?

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 12:35 
serval в сообщении #349492 писал(а):
что будет через минуту

Аналогично.
Начинается чистая философия и растекание по древу.
При переходе к математической формализации потеряно время.

Вы очень хорошо высказались о ковырянии в носу. Давайте прекратим заниматься этим недостойным делом.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 13:02 
Аватара пользователя
Не возражаю :-)

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:04 
Я предлагаю такой вариант парадокса:
Есть мешок, который может содержать только конечное количество вещей, но при этом он может сколько угодно растягиваться. Есть бесконечное количество пронумерованных шаров. В моменты времени 1/n до полудня ангел кладет следующие 10 шаров, а черт вынимает шар с минимальным номером. Что будет в полдень?

 
 
 
 Re: Задача о двух конвертах с геометрическим распределением
Сообщение04.09.2010, 14:08 
epros в сообщении #349299 писал(а):
Случай 1 - левый шар останется, поскольку его не вынимают, больше ничего не останется.


А какой на нём будет номер? Вероятно, Вы скажете, что он будет без номера, поскольку любой номер рано или поздно будет стёрт?

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:33 
Аватара пользователя
Dandan
Баян. В полдень в мешке ничего не будет. Ибо любой шар вытащится до полудня. И не важно, сколько за раз кладет ангел, хоть миллион.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:34 
Dandan в сообщении #349521 писал(а):
Я предлагаю такой вариант парадокса:
Есть мешок, который может содержать только конечное количество вещей, но при этом он может сколько угодно растягиваться. Есть бесконечное количество пронумерованных шаров. В моменты времени 1/n до полудня ангел кладет следующие 10 шаров, а черт вынимает шар с минимальным номером. Что будет в полдень?


Есть 2 варианта ответа:

1) Мешок лопнет, поскольку он может содержать только конечное количество вещей

2) Мешок будет пуст, поскольку любой шар рано или поздно будет вынут.

На мой взгляд, оба ответа одинаково бессмысленны.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:37 
Аватара пользователя
Andrey Lukyanov
1) Как же он лопнет, если в любой момент времени там содержится конечное число шаров?
2) Именно так.

И ничего бессмысленного. Здесь уже и парадоксов никаких нет.

-- Сб сен 04, 2010 15:44:33 --

Тут ведь вот какая ситуация (которая кого-то может сбивать). Число шаров до полудня в мешке растет. И стремится к бесконечности. А число шаров в полдень равно нулю. Ну и что, подумаешь, предел функции не совпадает со значением в точке. И такое бывает. Даже название для таких функций придумали.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:49 
Аватара пользователя
Смотрю, смотрю и никак не могу понять:
topic13643.html
Внизу "Темы с похожим названием". Неужели трудно посмотреть?

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:52 
ShMaxG в сообщении #349532 писал(а):
Andrey Lukyanov
1) Как же он лопнет, если в любой момент времени там содержится конечное число шаров?


А как там окажется ноль шаров, если в любой момент времени число шаров больше нуля?

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 14:58 
Аватара пользователя
Andrey Lukyanov в сообщении #349537 писал(а):
А как там окажется ноль шаров, если в любой момент времени число шаров больше нуля?


Ну ясно ж как. Любой шар будет вытащен. Вот и все. А предел функции и значение ее в точке не обязаны совпадать.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 15:02 
ShMaxG в сообщении #349539 писал(а):
Ну ясно ж как. Любой шар будет вытащен. Вот и все. А предел функции и значение ее в точке не обязаны совпадать.


Любой шар будет вытащен, но только при условии, что будут добавлены другие шары. Просто так шар вытащить нельзя.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 15:08 
Аватара пользователя
Ну будут добавлены. Но те, что добавились однажды тоже будут вытащены. И?

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 15:27 
Если бы мешок был безразмерный, то можно рассуждать так:
будем считать, что ангел сразу положил все шары, а черт пошагово вынимает 1. Тогда в полдень мешок будет пуст.
Такое объяснение тоже спорно (если мы НЕ принимаем заведомо какую-нибудь аксиоматику теории множеств). Но в случае с ограниченным мешком оно вообще не подходит.

 
 
 
 Re: По мотивам Литлвуда
Сообщение04.09.2010, 16:13 
Аватара пользователя
ShMaxG в сообщении #349539 писал(а):
Ну ясно ж как. Любой шар будет вытащен. Вот и все. А предел функции и значение ее в точке не обязаны совпадать.

Не совсем так. Вытащены будут лишь "счетные" шары, имеющие номера. Все шары не обладающие этим свойством вытащены не будут. см. мое предыдущее сообщение.

 
 
 [ Сообщений: 74 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group