1. Итак в квадратных скобках - "галилеева метрика", но на самом деле это просто разложение квадратного корня от метрики Минковского в нерелятивистком пределе. Где финслеровы прелести?
Вы, вероятно, не совсем в курсе. И метрика Минковского, и та, что в квадратных скобках, и евклидова метрика, и метрика, которую можно связать с лагранжианом гравитационного поля и заряженной частицей в нем (в финслеровском лексиконе она называется метрикой Рандерса), и метрика Бервальда-Моора - это все финслеровы метрики, или "финслеровы прелести", как Вы выразились. Причем за каждой из этих метрик стоИт пространство со своей неповторимой геометрией, иными словами, это все пространства не изоморфные друг другу.
Что касается Вашего внимания к метрике в квадратных скобках, то ею увлекались еще годах в семидесятых прошлого века, просто Вам соответствующие работы, наверное, не попадались. Книга Гарасько посвящена совсем не ей. В центре внимания автора метрики вида:
(1)
которые носят название метрик Бервальда-Моора. Попробуйте посмотреть на страницах 154, 188 и 215.
Что замечательно, метрика в квадратных скобках является результатом разложения не только метрики Минковского в нерелятивистском пределе, но и метрики четырехмерного Бервальда-Моора, только с точностью до бесконечно малых разного порядка малости. Таким же свойством обладает еще одна четырехмерная финслерова метрика, которую иногда называют метрикой Чернова. Она в базисе, аналогичном представлению (1) имеет вид связанный с симметрическим многочленом третьей степени:
В этой связи не лишне будет отметить, что сама метрика Минковского в аналогичном базисе приобретает вид связанный с симметрическим многочленом второй степени:
откуда не трудно видеть, что все три последние метрики - близкие родственники, во всяком случае, если подходить с позиций базиса, состоящего из изотропных векторов их световых конусов. В "ортонормированных" базисах этих пространств родство не так заметно, ну да ведь свойства метрик не зависят от базиса..
2. Берём любую программу построения "комплексных" фракталов и меняем комплексную единицу на двойную. Причем здесь финслеровость?
Извините, но вы сделали сильно неверное утверждение. Исходя из этого факта, можно заподозрить в аналогичном грехе и другие Ваши заявления. Не стОит торопиться с заключениями, особенно, если они касаются областей, от которых Вы далеки. Легко совершить промах..
Посмотрите, пожалуйста:
http://hypercomplex.xpsweb.com/articles ... /11-10.pdfТам имеется обзор литературы с попытками тех, кто как и Вы пытались вот так запросто поменять эллиптическую мнимую единицу на гиперболическую, а также примеры того, что при этом получается.
В предлагаемой нашей работе еще нет окончательного результата о том, как на самом деле получаются и выглядят гиперболические аналоги множеств Жулиа на плоскости двойной переменной (об этом, как говорится, в следующем номере), но сказанного там, полагаю, должно хватить, что бы Вы задумались, на сколько задача построения гиперболических алгебраических фракталов отличается от того, что выше Вы написали.
3. Посмотрите здесь m
http://en.wikipedia.org/wiki/Conformal_field_theory m , там есть и вводные курсы. Бесконечномерные алгебры, отражающие симметрии физических моделей ПРИМЕНЕНЫ для точного решения этих моделей. Где это в финслере?
Я же не спорю, что свойства бесконечномерных конформных групп как римановых, так и псевдоримановых пространств (кстати, это две разных группы) давно и плодотворно используются и физиками, и математиками. Я говорю о
другом, а именно о том, что практически в полной аналогии с методами комплексного потенциала на комплексной плоскости может (и должен) быть развит метод
-комплексного потенциала на плоскости двойной переменной. О нелогичности отсутствия последнего я и пытаюсь Вам говорить. Здесь даже финслерова геометрия вообще-то не причем, так как соответствующая геометрия - самая обыкновенная псевдориманова и всего с двумя измерениями. Боюсь, что Ваши выводы в отношении
-аналитических функций из разряда столь же поспешных, как и те что были в п.2 о гиперболических аналогах множеств Жулиа.. Попробуйте не торопиться с выводами, а хоть немного поэкспериментировать..
Я понимаю, что если бы Виттен взялся бы за финслера, то все бы взялись. Но он не берётся. Потому нужен хотя бы один серьёзный эффект.
Если бы, в свое время, Остроградский или Гаусс взялись за неевклидову геометрию, то и все бы тогда взялись.
Вместо этого, один - инициировал шельмование Лобачевского, а другой прекрасно понимая мотивацию последнего, предпочел благоразумно не высовываться, видимо справедливо опасаясь "критики" со стороны "всех".
Собственно, с тех пор ничего и не поменялось.. Я в некотором смысле собираю мнения наших известных и заслуженных современников в отношении финслеровой геометрии. Арнольд, например, чуть ли не руками стал махать на одного знакомого мне профессора, когда тот заикнулся на предмет обсуждения ее перспектив. Вайнберг также не пошел на обсуждение. Пенроуз и Громов - согласились на разговор, но остались при своем мнении, что у финслеровой геометрии нет, видимых ими, ни математических, ни физических перспектив. Впрочем, это ни сколько не помешало обоим пожелать нам успехов.. Общался я и с другими известными физиками и математиками. Многие также не видят интересных вариантов развития, но не возражают против необходимости исследований. Кстати, наверняка уважаемый Вами Глэшоу, относительно недавно весьма в положительных тонах отозвался о работе Г.Ю.Богословского (по совместительству являющегося сотрудником нашего института) в связи с одной из его работ по финслеровым расширениям теории относительности и даже предложил свой вариант названия новой теории - "очень специальная теория относительности". Поддержал эту оценку (как и необходимость других, уже гиперкомплексных обобщений СТО и ОТО) Г.Гиббонс.
На счет позиции Виттена в отношении его оценки перспектив финслеровой геометрии мне ничего не известно. А Вы что-то слышали?
По поводу "серьезного эффекта"..
Вы что ни будь слышали об анизотропии реликтового излучения в связи с относительной скоростью наблюдателя, то есть из-за эффекта Доплера? Сколько и где, по-Вашему должно наблюдаться экстремумов в температуре реликтовых фотонов, обусловленных одной кинематикой? Ответ, казалось бы, однозначен и предсказывает два экстремума по и против вектора относительной скорости
наблюдателя. Их амплитуда по расчетам порядка
. В проcтранстве-времени с метрикой Бервальда-Моора на небосводе наблюдателя, как показывают наши предварительные расчеты, кроме практически таких же и располагающихся там же двух главных экстремумов температуры должны появляться еще две их группы в самых различных направлениях, вплоть до экваториальных по отношению к направлению движения наблюдателя. Амплитуды этих дополнительных экстремумов существенно ниже, чем
. Первая группа состоит из четырех пятен, вторая - из восьми. Все три группы экстремумов (включая ту пару, что имеется и в эффекте Доплера в пространстве-времени Минковского) имеют исключительно кинематическое происхождение и если меняется направление скорости наблюдателя относительно внешнего фона (например за счет положения на орбите), вместе с этим
согласованно меняются и направления всех 14-ти экстремумов в финслеровом пространстве-времени. Или иными словами, в таком финслеровом мире оси диполя, квадрупроля и октуполя в анизотропии реликтового фона должны коррелировать между собой.
Попробуйте поискать в интернете информацию о так называемой космологической "оси зла". Суть этого звучного термина заключается в том, что в анизотропии
реально померянного реликтового фона - оси диполя, квадруполя и октуполя случайно (??) оказались практически параллельными друг другу и параллельными направлению движения Земли в отношении к фону.. Ну, в отношении диполя - результат стопроцентно понятен и ожидаем. А в отношении квадруполя с октуполем почему так получилось? Случайность такого совпадения оценивается на уровне 1/10000.. Сюда же, похоже, можно отнести другой необычный наблюдательный факт: амплитуда квадруполя - порядка
, что в семь(!) раз ниже амплитуды, которая предсказывалась стандартной космологической моделью.
Как Вы полагаете, это "серьезный эффект", что бы хотя бы задуматься?..