2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5, 6  След.
 
 Сумма всех натуральных чисел
Сообщение29.12.2008, 22:16 
Аватара пользователя
Всем здравствуйте!
Меня последнее время занимает один вопрос. известно, что сумма всех натуральных чисел равна $-\frac{1}{12}$. Это можно получить вычислив функцию Римана от -1. Эйлер смог доказать этот факт 4 различными способами. Так вот, кто-нибудь знает, как это можно сделать? (не используя функция Римана)

 
 
 
 
Сообщение29.12.2008, 22:22 
Впервые об этом слышу! Тут же возникает вопрос если все натуральные числа "симметричны" относительно нуля, то как может получится $-1/12$? Попахивает бредом

Если можете, дайте ссылку, где об этом написано

 
 
 
 
Сообщение29.12.2008, 22:22 
Аватара пользователя
Сумма членов любой арифметической прогрессии равна $\frac{5d-6a_1}{12}$, где $d$ - разность, $a_1$ - первый член. И все это неортодоксально.

 
 
 
 
Сообщение29.12.2008, 22:27 
Аватара пользователя
juna писал(а):
Сумма членов любой арифметической прогрессии равна $\frac{5d-6a_1}{12}$, где $d$ - разность, $a_1$ - первый член. И все это неортодоксально.

А можно глупый вопрос? откуда эта формула?

kvanttt писал(а):
Тут же возникает вопрос если все натуральные числа "симметричны" относительно нуля, то как может получится $-1/12$?

А что вы имеете в виду, говоря о симметричности натуральных чисел?

 
 
 
 
Сообщение29.12.2008, 22:31 
Аватара пользователя
Эту формулу получает Варшамов в своей книге
http://dxdy.ru/topic7682.html

 
 
 
 
Сообщение29.12.2008, 22:52 
Аватара пользователя
Спасибо за ссылку.
А как сам Эйлер это доказал?
Я где то встречал доказательство при помощи сложения. то есть там рассматривалась сумма 1-1+1-1+...=a. и из нее выводилось доказательство нужного факта.

 
 
 
 
Сообщение29.12.2008, 23:13 
Аватара пользователя
Кстати говоря, во время Эйлера теория рядов была противоречивой, эту проблему решили после того, как дали "хорошие" определения пределам, рядам...

 
 
 
 
Сообщение29.12.2008, 23:39 
Этому факту даже посвящена статья в Википедии. Оттуда можно пройти по ссылкам на суммирование Рамануджана и в самом низу на небольшую статью о методе суммирования собственно Эйлера.

 
 
 
 
Сообщение30.12.2008, 01:11 
Аватара пользователя
ILYA_First писал(а):
Меня последнее время занимает один вопрос. известно, что сумма всех натуральных чисел равна $-\frac{1}{12}$.


kvanttt писал(а):
Тут же возникает вопрос если все натуральные числа "симметричны" относительно нуля...


ILYA_First писал(а):
...рассматривалась сумма 1-1+1-1+...


Народ! Вы натуральные числа с целыми не перепутали?

 
 
 
 
Сообщение30.12.2008, 01:35 
Аватара пользователя
Профессор Снэйп в сообщении #172807 писал(а):
Народ! Вы натуральные числа с целыми не перепутали?

Утверждается, что $1+2+3+4+5+...=-\frac{1}{12}$
Так что можно даже с рациональными перепутать.

 
 
 
 
Сообщение30.12.2008, 01:49 
Аватара пользователя
Старикаша Эйлер по своему обычаю не волновался о сходимости рядов. Поэтому он рассмотрел степенной ряд
$\sum n x^n$,
путем почленного интегрирования просумировал и, как теперь принято говорить, продолжил результат аналитически до точки $x=1$. Таких вычислений у Эйлера вусмерть

 
 
 
 
Сообщение30.12.2008, 01:55 
juna в сообщении #172821 писал(а):
Утверждается, что $1+2+3+4+5+...=-\frac{1}{12}$

Не, ну раз уж $1+2+4+8+16+... = -1$. то и в этом утверждении нет ничего особо необычного :)

 
 
 
 
Сообщение30.12.2008, 15:25 
Аватара пользователя
Вы не путаете обычную сумму и сумму Рамануджана?

 
 
 
 
Сообщение30.12.2008, 15:33 
Anton Nonko в сообщении #172907 писал(а):
Вы не путаете обычную сумму и сумму Рамануджана?
А не называете ли Вы суммирование бесконечных сходящихся рядов обычной суммой? :)

 
 
 
 
Сообщение30.12.2008, 15:37 
Аватара пользователя
Неправильно выразился, это предельный переход от обычной суммы. Однако, ряд натуральных чисел не сходится.

 
 
 [ Сообщений: 82 ]  На страницу 1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group