Естественный линейный порядок это естественная упорядоченность и есть, я думал это очевидно) Побеждает же слово "естественная". По поводу определений можно два подхода.
1. На

(линейный) порядок (т.е. выбор одного из двух положительных направлений, любого) называется естественным, если его с необходимостью индуцировать на ближайшие прямые

, со всеми вытекающими.
2. На

существует естественный (линейный) порядок, если можно эвристическим путем выбрать одно из двух формальных положительных направлений как наиболее естественное. Из этого следует, что это можно сделать и для ближайших прямых, путем индуцирования естественного положения опорной прямой
и приблизьте его к рассматриваемым в теме числовым полям.
Ок, из операций берем только сложение (без умножения)
Я понял, что Вы не мастер определений) Теперь о том, что я понял, поправьте, если не так.
На каждой прямой

, в общем случае, существуют два линейных порядка, но поля нет, так как имеется только одна операция - сложение комплексных чисел. Только при

выполняется также операция умножения, т.е. получаем числовое поле

, согласованное с линейным порядком.
В отношении, так называемого, "естественного" порядка. Вы выполняете ортогональное проектирование комплексных чисел на действительную ось и присваиваете комплексным числам порядок в соответствии с их проекцией на положительное или отрицательное направлением действительной оси. Конечно при проходе через угол

"естественный" порядок комплексных чисел меняется на противоположный. Операции в поле комплексных чисел не согласованы с таким порядком, так как не учитывается мнимая часть комплексного числа. Поэтому никакие выводы о неправильной линейной упорядоченности действительных чисел на основании "естественного" порядка делать нельзя.