Нашёл автора, который мне понятен. Книга
Дмитрий Граве. Начала Алгебры.
Он пишет:
Цитата:
мы были убѣждены, что строго логическое изложеніе можно совмѣстить съ простотой, доступной для пониманія средняго ученика.
Он вводит иррациональные числа, как очевидные, после рассмотрения бесконечных периодических дробей в десятичной системе счисления:
Цитата:
§ 2. Мы придемъ самымъ простымъ и естественнымъ путемъ къ числамъ ирраціональнымъ, если мы будемъ разсматривать безконечныя десятичныя дроби. Примѣромъ такихъ дробей могутъ служить періодическія десятичныя дроби, разсматривавшіяся въ ариѳметикѣ.
Изъ всего, что извѣстно намъ изъ ариѳметики, мы приходимъ къ заключенію, что положительныя раціональныя числа раскладываются или въ конечныя или въ періодическія десятичныя дроби:
§3. Можно себѣ представить заданную безконечную неперіодическую десятичную дробь. Задать подобную дробь, это значитъ: указать правила, по которымъ можно была бы узнать, какая цифра стоитъ на любомъ указанномъ мѣстѣ. Напримѣръ, дробь
(1)
можно считать заданною. Единицы стоятъ на первомъ мѣстѣ послѣ запятой, на третьемъ, на шестомъ, на 10-омъ, на 15-омъ и т. д.
...
Дробь (1) неперіодическая, слѣдовательно, она не можетъ быть разложеніемъ раціональнаго числа, она представляетъ числа новой природы.
Опредѣленіе ирраціональнаго числа.
§ 4. Всякая безконечная неперіодическая десятичная дробь представляетъ положительное ирраціональное число. Та же дробь, взятая со знакомъ минусъ впереди, представляетъ отрицательное ирраціональное число.
Тут хитрое определение. Не "иррациональное число это...", а "бесконечная непериодическая десятичная дробь это иррациональное число". Наверное приставали с вопросами типа "а в двоичной системе счисления не может быть иррациональных чисел"? Поэтому, так выкрутился. И правильно сделал, а то можно бесконечно спорить по малозначимым нюансам. Возьму на вооружение.
Число — это одно из основных понятий математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Чаще всего в качестве чисел используют числа в десятичной системе счисления и обыкновенные дроби.
Бесконечная непериодическая десятичная дробь представляет иррациональное число. Правила, определяющие цифры такого иррационального числа, могут быть заданы, например, алгоритмом или с помощью математического выражения.
-- 13.02.2024, 12:32 --Цитата:
§ 6. Поле IV, о которомъ мы упомянули въ § 1 (стр. 99), будетъ состоять изъ чиселъ, опредѣленныхъ десятичными дробями конечными, періодическими и безконечными неперіодическими,, а также всѣхъ этихъ дробей, взятыхъ со знакомъ минусъ. Если бы мы захотѣли опредѣленіе равенства чиселъ ирраціональ-
ныхъ, данное въ § 5, распространить и на числа раціональныя, опредѣляемыя десятичными дробями, то тутъ встрѣтилось бы одно исключеніе, а именно, дроби съ періодомъ 9 равны конечнымъ дробямъ, напримѣръ,
Если мы согласимся не писать дробей съ періодомъ 9, то можно будетъ установить опредѣленіе равенства чиселъ какъ раціональныхъ, такъ и ирраціональныхъ, при помощи тождественности ихъ представленій десятичными дробями.
linkЭто исключение портит всю красоту. Как бы от него избавиться?