А я смотрю на аксиомы ZFC и вижу, что они позволяют доказать существование множества
натуральных чисел с известными свойствами. Так же они позволяют определить понятие биекции между двумя множествами (как функции между двумя этими множествами с известными свойствами), а значит и определить понятие конечности множества (множество называется конечным, если существует биекция из него в какое-нибудь натуральное число).
И что? ZFC позволяет доказать, что минимальное индуктивное множество существует, но она не утверждает, что его элементы - "натуральные числа". А чтобы это утверждение сформулировать: "Натуральное число - это элемент минимального индуктивного множества", - аксиомы ZFC не нужны. Вы можете добавить в язык новый символ -
- и определить его значение, записав указанное выше утверждение как новую аксиому теории. Но можете этого и не делать, а просто начинать каждое утверждение о натуральных числах с: "Если
является элементом минимального индуктивного множества, то ...".
Про "биекцию" - то же самое. И про "конечность" в итоге будет то же самое. Аксиоматика ZFC никак не поможет и не помешает определить конечность. Важны только выразительные возможности языка.
Давать новые определения где? В какой теории? Прежде чем давать определения, обозначьте теорию, в которой Вы эти определения собираетесь давать.
Всё совершенно не так. Определения не даются в какой-то готовой теории. Определения и составляют теорию,
уже после того, как они даны.
О какой теории речь? О той, в которой 3 аксиомы группы? Если да, то как Вы в ней хотите говорить про биекции и натуральные числа? Можете сколько угодно длинную строчку писать, я не против. Но объясните, как Вы хотите выразить в этой теории хотя бы понятие натуральных чисел.
Вы меня не слышите. Я говорю Вам, что бессмысленно говорить о "выразимости в теории", имея в виду готовую аксиоматику. Говорить можно только о "выразимости в языке".
Я говорил про термы. Любой терм любой формальной теории - это строчка.
Вы зачем-то захотели сказать, что значит "определить терм". Причем в Ваших понятиях это почему-то означает всего лишь "записать" его, что какая-то бессмыслица. По моим понятиям, является ли заданная строчка "термом", определяется грамматикой языка.