2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 3, 4, 5, 6, 7  След.
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение09.12.2022, 18:54 
mihaild в сообщении #1573227 писал(а):
ivanovbp, вы хотите понять, где ошибка в вашем рассуждении, или не хотите? Если да, то ответьте на вопросы.

(Полагаю, ошибки указываются не вопросами, а утверждениями)
Но позвольте и мне задать вопрос:
Если $a^3 = X + n^3$, то каким должен быть X, чтобы из суммы $X + n^3$ можно было извлечь кубический корень?
По-моему, ответ ясен: X может быть только ${7n^3}$ или ${26n^3}$ .... (${k^3} - 1)n^3$
Жду числового опровержения

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение09.12.2022, 18:56 
Аватара пользователя
ivanovbp в сообщении #1573236 писал(а):
Полагаю, ошибки указываются не вопросами, а утверждениями
Неправильно полагаете.
ivanovbp в сообщении #1573236 писал(а):
Но позвольте и мне задать вопрос
Сначала ответьте на приведенные выше мои вопросы, пятый раз прошу. Либо укажите, что конкретно в них непонятно.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 05:47 
Аватара пользователя
mihaild в сообщении #1573227 писал(а):
ivanovbp, вы хотите понять, где ошибка в вашем рассуждении, или не хотите?

При таком, кхм, понимании математики одного желания будет недостаточно. Ему ведь всё ясненько. Это нам неясно, как можно не понимать простых вопросов и отвечать на них невпопад. Чего стоит, например, куб $16n^3$, из которого нельзя извлечь корень кубический. А ответ на вопрос о диофантовом уравнении
Shadow в сообщении #1573115 писал(а):
a^3=3b^2+3b+1

Тут уж действительно пора перестать "корчить из себя учителей".

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 09:42 
Аватара пользователя

(я кажется понял)

Лаконичность ответа $b = \dfrac{ - 3 + \sqrt{93}  }{ 6 }\,\,$ на вопрос о дифантовом уравнении $a^3=3b^2+3b+1$ затруднило понимание. Однако если вставить недостающие слова, то всё становится предельно ясным.

При $a=2$ имеем квадратное уравнение $3b^2+3b-7=0.$ Если бы корень $b = \dfrac{ - 3 + \sqrt{93}  }{ 6 }\,\,$ оказался бы целым, то это положительно бы решало вопрос разрешимости диофантова уравнения, а поскольку этот корень не целый, то получаем отрицательный ответ.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 11:36 
Спрашиваю (всех желающих ответить) во второй раз:
Если есть выражение $X + \hat{n^3}$, то каким должно Х, чтобы из суммы $X + \hat{n^3}$ можно было извлечь кубический корень?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 11:42 
Аватара пользователя
ivanovbp
По правилам форума, процитированным выше, на вопросы должны отвечать Вы, как создатель темы в дискуссионном разделе. Такие вот у форума правила. Причина в том, что прямо Вам уже неоднократно пытались сказать, где у Вас ошибка, но Вы не понимаете этого. Поэтому приходится идти длинным путём, через вопросы. Если будете отвечать и не увиливать - в некоторый момент сами увидите ошибку и ещё удивитесь, как Вы могли так ошибиться.
ivanovbp в сообщении #1573295 писал(а):
Если есть выражение $X + \hat{n^3}$, то каким должно Х, чтобы из суммы $X + \hat{n^3}$ можно было извлечь кубический корень?
Во всяком случае, ответ
ivanovbp в сообщении #1573236 писал(а):
По-моему, ответ ясен: X может быть только ${7n^3}$ или ${26n^3}$ .... (${k^3} - 1)n^3$
грубо неверен. И "числовое опровержение" Вам тоже уже показывали, только Вы не поняли, что оно является опровержением. Поэтому - будьте добры, отвечайте на вопросы.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 11:49 
ivanovbp в сообщении #1573295 писал(а):
Если есть выражение $X + \hat{n^3}$, то каким должно Х, чтобы из суммы $X + \hat{n^3}$ можно было извлечь кубический корень?

Любым из бесконечного множества $\left\lbrace{(n+1)^3-n^3, (n+2)^3-n^3,..., (n+k)^3-n^3, ...}\right\rbrace$

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 12:10 
Аватара пользователя
Booker48 в сообщении #1573297 писал(а):
Любым из бесконечного множества $\left\lbrace{(n+1)^3-n^3, (n+2)^3-n^3,..., (n+k)^3-n^3, ...}\right\rbrace$
Да, и если уж ответ прозвучал, добавлю к этому, что число $7n^3=(2n)^3-n^3$ стоит здесь далеко не на первом месте (в случае $n>1$). А $26n^3$ - далеко не на втором месте. Т.е. кроме $7n^3$, $26n^3$ и так далее, есть ещё много других возможных значений $X$.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 13:37 
Аватара пользователя

(Оффтоп)

Mikhail_K в сообщении #1573299 писал(а):
Да, и если уж ответ прозвучал, добавлю к этому, что число $7n^3=(2n)^3-n^3$ стоит здесь далеко не на первом месте (в случае $n>1$)

Это уже было и неоднократно. А в случае $n=1$ пропусков нет и этот случай предлагался.

Shadow в сообщении #1573115 писал(а):
Shadows
писал(а):
Давайте только для n=1 Дикое упрощение. И так

$a^3=3b^2+3b+1$

Справитесь?

Ну, разумеется справился. Какие ещё могут быть вопросы?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 13:58 
Аватара пользователя
bot в сообщении #1573266 писал(а):
При таком, кхм, понимании математики одного желания будет недостаточно.
При наличии желания понимание математики до необходимого здесь уровня (это вроде примерно 6й класс) подтянуть всегда можно.
bot в сообщении #1573266 писал(а):
Это нам неясно, как можно не понимать простых вопросов и отвечать на них невпопад
Мне совершенно ясно, как можно не понимать чего угодно и давать самые странные ответы на вопросы. Мне несколько менее понятно, как можно вопросы игнорировать совсем.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 14:20 
Аватара пользователя

(Оффтоп)

mihaild в сообщении #1573305 писал(а):
Мне несколько менее понятно, как можно вопросы игнорировать совсем

А это мне понятно: если понятно, что вопрос непонятен, то и непонятно как отвечать.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 14:31 
n = 7 ${n^3} = 343$ К 343 можно добавлять любые числа и пытаться получить кубический корень. Но пока не
добавите 2401 - ничего не получится. А вот из суммы 343 + 2401 = 2744 корень извлечь можно - это будет 14
Между прочим 2401 = 7 $\cdot 343$, но кубический корень из него извлечь нельзя. Это я и пытаюсь доказать

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 14:43 
ivanovbp в сообщении #1573308 писал(а):
n = 7 ${n^3} = 343$ К 343 можно добавлять любые числа и пытаться получить кубический корень. Но пока не
добавите 2401 - ничего не получится.

????
Вы в какой-то другой арифметике живёте. Я вот добавил всего лишь 169 - и всё получилось!

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 14:55 
Booker48 в сообщении #1573297 писал(а):
Любым из бесконечного множества $\left\lbrace{(n+1)^3-n^3, (n+2)^3-n^3,..., (n+k)^3-n^3, ...}\right\rbrace$

Так извлеките хотя бы один из выражения ${n^3} + {3n^2} + 3n + 1$


n^2

-- 10.12.2022, 15:02 --

Booker48 в сообщении #1573310 писал(а):
ы в какой-то другой арифметике живёте. Я вот добавил всего лишь 169 - и всё получилось!


Вы невнимательно читали моё доказательство. . Тот самый Х, который надо добавлять к ${n^3}$, должен быть больше ${n^3}$ т.е. надо брать числа, большие чем 343

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение10.12.2022, 15:17 
Аватара пользователя
ivanovbp, ответы на вопросы будут, или пора на факториал жать?

 
 
 [ Сообщений: 100 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group