2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 7  След.
 
 И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 08:15 
Как требуют правила форума - ПОКА только для 3-ей степени (есть решение и для 4-ой, 5-ой и т.д., но это потом).
Принимаю, что равенство $\hat{a^3}  + \hat{b^3}  = \hat{c^3}$ существует. Число "С" можно представить как
с = b + n. Тогда
$\hat{c^3} = \hat{b^3} + \hat{3b^2}n + \hat{3bn^2} + n^3 $  и
           $\hat{a^3} = \hat{c^3} - \hat{b^3} = \hat{3b^2n} + \hat{3bn^2} + \hat{n^3}$
Переношу $\hat{a^3}$ вправо и получаю уравнение
$\hat{3b^2n} + \hat{3bn^2} + n^3 - a^3 = 0 $
Это типичное квадратное уравнение вида
$\hat{ax^2 + bx +c =0}$
где x = - b/2a + $\hat{\sqrt{b^2 - 4ac}}$ / 2а
Во втором слагаемом "2а" вношу под корень и получаю
x = -b/2a + $\hat{\sqrt{b^2/4a^2 - c/a}}$
Применительно к нашему случаю, меняя "x" на b, "b" на $\hat{3n^2}$, "a" на 3n
и "с" на $\hat{n^3 - a^3}$ получим выражение для b :
b = - $\hat{3n^2/6n}$ + $\hat{\sqrt{(9n^4 - 12n^4  + 12 an)}}$ / 6n
Внесём 6n во втором слагаемом под корень, произведём простые арифметические действия и получим
b = - 0,5n + $\hat{\hat{\sqrt{- 0,0833...(3) n^2 + 0,33...(3) a/n}}}$
Как видно, подкоренное выражение содержит 3-ку в периоде. Это означает, что извлечь корень невозможно, т.е.
уравнение вида $\hat{a^3 + b^3 = c^3}$ не существует

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 10:16 
Аватара пользователя
У вас прямо нашествие хаттов в формулах и вообще причесать не мешало бы.
Но я только про три в периоде. Это хорошее число, рациональное. И если занести в корень из дискриминанта $6$, то можно легко подобрать такие $a,n$, что $D=(-3n^4  + 12 an)/36$ будет полным квадратом.
Навскидку, $a=5375, n=20: D=810000=900^2$. Конечно, в окончательном результате целого можно не получить, но тройка в периоде в этом не виновата.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 13:18 
Аватара пользователя
«Равенство существует», «уравнение не существует» — что это такое вообще? Это что-нибудь значит? Почему за теорему Ферма почти всегда берутся люди, не владеющие языком?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 13:44 
для gris
1. Под корнем знаменатель не 36, а $\hat{36n^2}$
2. Дискриминант поэтому не 810000, а 56,25 и корень из него = 7,5
3. Полное значение b = - 0.5 х 20 + 7.5 = - 2.5 - число дробное да ещё отрицательное.
Какое отношение к этому имеет старик Ферма?
За замечание к оформлению - спасибо. Пока не очень-то в ладах LaTeX-ом, но учусь

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 14:42 
Аватара пользователя
Дроби набираются как \frac{числитель}{знаменатель}, ваше выражение для $b$ надо записывать, например, так: $b = -\frac{1}{2}n + \sqrt{-\frac{n^2}{12} + \frac{a}{3n}}$ (десятичные дроби, как правило, неудобны).
Вы, видимо, хотите сказать, что число под корнем - $\frac{a}{3n} - \frac{n^2}{12}$ - дробное. Это надо доказывать.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 21:46 
Аватара пользователя
ivanovbp, вы совершенно правы, сказав, что Ферма к этому отношения не имеет. Оправдаюсь. По-первых, дроби не страшны. Ведь в сумме две дроби могут дать целое число. Во-вторых, не страшны отрицательные числа. Их можно перенести в другую часть. Но ваша замечательная формула куда-то подевала куб у а. Поэтому она к первоначальному уравнению отношения не имеет, разве что вы сделали замену $a^3\to a$. Но идея хорошая.
Я провожу сейчас расчёты в районе септиллиона, но если честно, то просто боюсь наткнуться на положительный результат. Опровергнуть ВТФ? В этом разделе можно за это получить замечание от модератора!

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 21:52 
Аватара пользователя
gris в сообщении #1571577 писал(а):
Но ваша замечательная формула куда-то подевала куб у а.
И даже я это не заметил, хотя пытался перепроверить:(
Но так еще лучше - доказали, что уравнение $a + b^3 = c^3$ решений не имеет.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение26.11.2022, 22:22 
Аватара пользователя

(Оффтоп)

Пошёл глумёж и балаган. Ну и хорошо, видно же, что автор не в силах разобраться в предъявляемых ошибках.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 07:53 
для Aritaborian
А по существу приведённых мною выкладок есть что ответить? Может быть, столь же убедительно найдёте ошибку?
Формул немного, они (формулы) просты.
Был бы весьма благодарен

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 09:55 
Совершенно верно, при переносе рукописи в компьютер потерял куб для числа "а". И спасибо gris за поправку.
Предпоследняя формула должна выглядеть так:
$\hat{b = - 3n^2/6n + \sqrt{9n^4 - 12n^4 + 12a^3n} /6n}$
Точно так же куб "а" должен быть в последней формуле:
$\hat{b = - 0,5n +  \sqrt{- 0,0833...(3)n^2 + 0.33...(3)a^3 /n}}$
Это исправление необходимо, но сути дела не меняет:
извлечь точный корень невозможно и потому нет целого положительного числа b, удовлетворяющего выражению
$\hat{a^3 + b^3 = c^3}$
что и требовалось доказать. Если есть логическая или математическая ошибка, то где она?
P.S. Надеюсь, что gris что-нибудь раскопает в септильонах (кстати, сколько там нулей)?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 11:50 
Аватара пользователя
Размышляя над последней версией формулы, заметил:
$b = - 3n^2/6n + \sqrt{9n^4 - 12n^4 + 12a^3n} /6n=-n/2+ \sqrt{( - 3n^2 + 12a^3/n)/36}$
И вдруг решил приравнять $n=a$
$b =-a/2+ \sqrt{( - 3a^2 + 12a^3/a)/36}=-a/2+ \sqrt{a^2/4}=0$
Но ноль недопустим для Уравнения. Поэтому перебор нужно делать для $n\neq a$
Поиск пар$(a,n)$, превращающих подкоренное выражение в квадрат рационального числа, не дал результатов в диапазоне $(1..1000000)$
Но я бы даже усилил требования к подкоренному выражению. Чтобы $b$ стало целым, необходимо, чтобы корень из дискриминанта был целым при чётном $n$, и целым плюс $\dfrac 12$ при нечётном $n$.
Займусь поиском (надеюсь, безрезультатным, хотя кто ж его знает :-) ), а вы улучшите теорию. Это правильный путь.
Добавлено в 12:31:87
Увы, отмечу ваши две ошибки, которые уже отмечались. Они не связаны с $a\leftrightarrow a^3$, что уже проехали, и с непонятно зачем применяемой шляпой.
Во-первых, наличие в выражении рационального числа в форме периодической дроби не означает того, что выражение не может проявляться полным квадратом.
Представьте, что $d=0.(3)\cdot n$. Это эквивалентно $d=\dfrac n3$ и при $n=12: d=4=2^2$
Второе: надо разделить чётные и нечётные $n$.
И доказывать строго.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 11:56 
Аватара пользователя
ivanovbp, мне кажется, Вы не поняли замечание
mihaild в сообщении #1571578 писал(а):
Но так еще лучше - доказали, что уравнение $a + b^3 = c^3$ решений не имеет.

Глумиться не буду, изложу простыми словами. Замените уравнение $a^3+b^3=c^3$ на $a+b^3=c^3$ и примените все Ваши выкладки. Тогда получите, что в выражении $$b = \frac{- 3n^2 + \sqrt{9n^4 - 12n^4 + 12an}} {6n}$$
ivanovbp в сообщении #1571531 писал(а):
извлечь корень невозможно

Будь это так, отсюда следовало бы неразрешимость уравнения $a + b^3 = c^3$ в натуральных числах.
Но это не так, "корень извлекается", например, для $a=7, n=1$, а уравнение очевидно имеет натуральные решения: $b$ и $c$ берём произвольно ($c>b$), а $a$ вычисляем: $a=c^3-b^3.$

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 15:48 
Во втором сообщении ( от 27.11.2022 время 09:55) я внёс поправку исправил a на
$\hat{a^3}$
В основном тексте не отметил, что n < a Мне это окажется очевидным из выражения
$\hat{a^3 = 3b^2n + 3bn^2 + n^3}$
Возможно, я слишком наивен, но хотелось бы знать: где в моём тексте ошибка?
И, как довесок - коротко и ясно, без нудных выкладок.
Ещё замечание: примерно такое же по сложности доказательство есть для степеней 4, 5, 6. Одна закавыка:
в этих доказательствах напрашивается значение для n (в выражении c = b + n), равное 2.
Поэтому предлагаю тему для разработки: на сколько единиц c может быть больше b
при уравнении любой степени. Мне , пока безосновательно, кажется, что максимум на 2

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 17:02 
Аватара пользователя
Ошибка в том, что ваше утверждение, что указанное подкоренное выражение ни при каких положительно натуральных параметрах не является квадратом натурального числа, хотя и абсолютно верно, но является следствием ВТФ, а не его доказательством, так как это утверждение в тексте не доказывается.
А вопрос с довесками усиленно разрабатывается в соседней теме.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение27.11.2022, 19:09 
для gris
Вольно вам называть доказательство следствием или, наоборот, следствие доказательством. Тут даже высшая математика со всеми её разделами не может помочь. Одно скажу: Выражение для b с неизвлекаемым корнем получено именно в предположении, что уравнение
$\hat{a^3 + b^3 = c^3}$
существует. Оказалось - да, существует, но не для целых b
P.S. О какой именно соседней теме вы говорили, можно узнать?

 
 
 [ Сообщений: 100 ]  На страницу 1, 2, 3, 4, 5 ... 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group