2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 92, 93, 94, 95, 96, 97, 98 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение10.07.2022, 23:54 
VAL
Держите, ровно по Вашему паттерну для $k=132$, хватило пары часов счёта в один поток (хотя $k=132$ с меньшей величиной нашлась за 40 минут):
$M(156)\ge8$:

(Оффтоп)

184765725510622981997339725582495167558850184262092026705051892231177342492648907795981988607883040618900509277343744

 
 
 
 Re: Пентадекатлон мечты
Сообщение10.07.2022, 23:58 
Dmitriy40 в сообщении #1559882 писал(а):
VAL
Держите, ровно по Вашему паттерну для $k=132$, хватило пары часов счёта в один поток (хотя $k=132$ с меньшей величиной нашлась за 40 минут):
$M(156)\ge8$:

(Оффтоп)

184765725510622981997339725582495167558850184262092026705051892231177342492648907795981988607883040618900509277343744
Отлично!
Все согласно прогнозу. Но быстрее, чем я ожидал.
Так и 204 может пойматься.

-- 11 июл 2022, 00:14 --

Выкладываю таблицу для поиска цепочки из 9 чисел по 180 делителей.
По ожидаемому количеству проверок прогноз благоприятный.
Но факторизация будет притормаживать.
Возможно, имеет смысл ограничивать ее по времени, дожидаясь благоприятных случаев.
А может быть, стоит добавить три множителя, чтобы во всех 9 позициях проверять на простоту.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 00:27 
VAL
$M(132) \le 21$ и $M(156) \le 21$. Доказательство такое же как и в случае $k = 84$. То есть, $M(k) \le 21$, если $k \equiv 4 \pmod{8}$ и $k$ не делится на 5.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 00:30 
mathematician123 в сообщении #1559884 писал(а):
$M(132) \le 21$ и $M(156) \le 21$. Доказательство такое же как и в случае $k = 84$
Как раз, собирался задаться этим вопросом. Вы меня опередили.

-- 11 июл 2022, 00:38 --

mathematician123 в сообщении #1559884 писал(а):
То есть, $M(k) \le 21$, если $k \equiv 4 \pmod{8}$ и $k$ не делится на 5.
Но лучше все же написать: $M(k) \le 21$, если $k \equiv 12 \pmod{24}$ и $k$ не делится на 5.
Для остальных оценка, конечно, тоже верна, но сильно завышена :-)

-- 11 июл 2022, 01:01 --

Изготовил таблицу для желающих поискать девятку по 132 делителя. А может, и по 156


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 10:34 
Аватара пользователя
По поиску цепочки 21 на 48 делителей.
Примено за полторы недели просчиталось до 550e52, после чего счеты остановил.
Наблюдения за результатами такие:
1. До 300е52 довольно часто встречаются цепочки с
Код:
valids = 10
, но небольше. Было порядка 1-2 десятков.
2. После 300e52 цепочки
Код:
valids >=10
встречаются крайне редко. Но там была цепочка с
Код:
valids=14
, и это рекорд.
3. На втором проходе проверки цепочки бракуются по неподходящим числам почти всегда находящимся в первой половине. Это с одной стороны - не удивительно, так как проверка во втором проходе начинается слева. Но удручает, так как проверка дальше половины цепочки никогда не проходит :-(
4. По грубым прикидкам для нахождения цепочки из 21 делителя за разумное время нужно сильное увеличение мощностей. На порядок, а лучше на два.
5. Или более внимательно посмотреть на паттерн, и там что-то поправить.

При поиске 20-ки на 48 делителей по программам уважаемого VAL без ускорителей и примерно вдвое меньшими мощностями, нашлась одна цепочка на 18 подошедших чисел, и несколько на 17. А тут даже такого нет. :cry:

Если у кого-то будет желание посмотреть на статистику - могу выложить логи на dropbox.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 11:03 
$M(240)\ge11$

(Оффтоп)

53606077646947080279175185156757665904278172728867836847860251242062936930270213376458750


-- 11 июл 2022, 11:18 --

EUgeneUS в сообщении #1559902 писал(а):
По поиску цепочки 21 на 48 делителей
Рекомендую (хотя бы временно) переключиться на более реалистичные задачи.
Я выкладывал довольно много таблиц с шаблонами паттернов. С хорошими прогнозами получения соответствующих цепочек за приемлемое время.
Для части из них, AFAIR, Дмитрий сделал программы. Сейчас уже точно не помню для каких. Но он, наверное, помнит (да и теме инфа где-то есть).

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 12:46 
$M(132)\ge9$:

(Оффтоп)

1492528153239676641134781494617568263978916682787474567227693728415576746670484477977554685472370753315893574218748

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 12:50 
Аватара пользователя
VAL в сообщении #1559904 писал(а):
Я выкладывал довольно много таблиц с шаблонами паттернов. С хорошими прогнозами получения соответствующих цепочек за приемлемое время.


Последовательность $k=12n$ - бесконечна. Поэтому я поставил для себя "границу интересов" - до $k=100$ :wink:, может быть с некоторыми дополнительными $k>100$, где будет реально найти самую длинную цепочку (но пока $k=48$ вне конкуренции в этом смысле).

По цепочкам с 48-ю делителями. Всё таки довольно странно, что при поиске 20-ки без ускорителей у меня находились и 17-ки, и даже одна 18-ка. А с ускорителями при поиске 21-ки, только 14-ка в единственном экземпляре.
Понятно, что если упереться и посчитать числа, для которых количество делителей не определено, то там будет не 14-ка, а больше. Но всё таки...
Может какой-то переход "количества в качество", как для 36 делителей при переходе от 13-ки к 14-ке и пятнашке. Может ещё что. :roll:

VAL в сообщении #1559904 писал(а):
Для части из них, AFAIR, Дмитрий сделал программы.

Не помню, чтобы Дмитрий выкладывал ускорители для новых цепочек после ускорителей для 48 делителей. Могш пропустить, конечно.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 12:51 
mathematician123 в сообщении #1559738 писал(а):
Создал проект в Overleaf: https://www.overleaf.com/read/xnyryzfvyjrj
.

Доделал раздел с утверждениями. Теперь там собраны все верхние оценки для $M(k)$, доказанные на данный момент. Если заметите, что я что-то упустил, пишите, исправлю.

VAL в сообщении #1559904 писал(а):
Рекомендую (хотя бы временно) переключиться на более реалистичные задачи

А насколько реально найти 16 чисел, имеющих по 60 делителей (если такие цепочки вообще существуют)? У меня есть гипотеза, что в случае $k \equiv 12 \pmod{24}$ цепочки длиной 16 и больше возможны только если $k$ делится на 5. А для $k = 60$ ограничений гораздо меньше и существование 16 последовательных чисел, имеющих по 60 делителей, выглядит вполне возможным.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 13:41 
Аватара пользователя
mathematician123 в сообщении #1559911 писал(а):
Если заметите, что я что-то упустил, пишите, исправлю.


1. Думаю, нужно также разместить результаты, которые были получены ранее, но которые перекрываются результатами, полученными в этой теме, но ещё не опубликованными. В частности:
$M(2p) \le 3$ for all prime $p > 3$
$M(2pq) \le 3$ for all primes $p, q$ such that $gcd(p-1,q-1) > 4$
$M(6p) \le 5$

2. Гипотезы:
$M(2pq) \le 3$ for all prime $p,q > 3$
$M(k) \le 3$ for $k = \pm 2 \pmod{12}$
$M(k) \le 5$ for $k = 6 \pmod{12}$

Были явно высказаны Владимиром где-то в недрах этой темы (а может быть и ранее). ИМХО, это тоже нужно отметить в Вашей сводке, несмотря на то, что две из них доказаны, а третья доказана частично.

-- 11.07.2022, 13:46 --

mathematician123 в сообщении #1559911 писал(а):
А насколько реально найти 16 чисел, имеющих по 60 делителей (если такие цепочки вообще существуют)?


1. По очень грубой прикидке, каждое новое число в цепочке трубует увеличения вычислений в 10 раз.
2. Сейчас найдена 11-ка, она искалась с ускоритиелями в течение 1-2 недель. Вычислительная мощность: 3-4 декстопа, не самых современных. Всего было около 10-12 потоков.
3. Надо увеличить цепочку на 6 позиций, значит вычислительная сложность вырастет в миллион раз. Также должна вырасти и вычислительная мощность, чтобы посчиталось за обозримое время. То есть 10-20 миллионов потоков. Это грубо и, скорее всего, занижено.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 13:56 
$M(192)\ge13$
Цепочка начинается с 51682648914977199298909295047775375066936643254684981244.

-- 11 июл 2022, 14:04 --

Dmitriy40 в сообщении #1559909 писал(а):
$M(132)\ge9$:
Я так понимаю, что на очереди 9 чисел по 156 делителей?
А паттерны для 10 чисел готовить?

-- 11 июл 2022, 14:11 --

mathematician123 в сообщении #1559911 писал(а):
А насколько реально найти 16 чисел, имеющих по 60 делителей (если такие цепочки вообще существуют)?
Во-первых, я не уверен, что они существуют.
Но это, пожалуй легко проверяется изготовлением паттерна и эмпирической оценкой вероятности успеха.
А вот в том, что эта вероятность будет мизерной, т.е. в практической недостижимости какой цепочки (с нашими сегодняшними алгоритмами и ресурсами), я уверен.
А паттерн попытаюсь сделать и пробный подсчет тоже. Возможно, что-то прояснится.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 14:46 
EUgeneUS в сообщении #1559910 писал(а):
Не помню, чтобы Дмитрий выкладывал ускорители для новых цепочек после ускорителей для 48 делителей. Могш пропустить, конечно.
Тоже не помню, потому зашёл в облако и посмотрел: выложены M12n15, M36n13, M48n21, M60n11, M72n14, M84n11. Первое понятно уже устарело, как и M36n13 и M60n11, а 48,72,84 делителей вполне готовы.

VAL в сообщении #1559918 писал(а):
Я так понимаю, что на очереди 9 чисел по 156 делителей?
А паттерны для 10 чисел готовить?
Пока не знаю, думаю 204 поискать, 8 или сразу 9. Всё же искать новое интереснее чем поднимать границу. Но сомневаюсь что оно найдётся быстро, всё же 155 цифр вместо 105, это же в 8 раз дольше, т.е. до недели (в одном потоке). А меня раздражает что 172 делителя никак не находятся, ни с 5-ю, ни с 7-ю проверяемыми числами, похоже на этом лёгкое нахождение семёрок вида $k=4p$ закончилось.
Паттерны Ваши пока не смотрел (кроме того решения 8 по 132, из которого получил 8 по 156, 9 по 132 уже по своим паттернам нашёл).

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 15:08 
EUgeneUS
VAL
Понятно, Спасибо.

Я думаю, можно попробовать обобщить доказательство $M(36) \le 15$ на случай, когда $k \equiv 12 \pmod{24}$ и $k$ не делится на 5. Тут просматривается некоторая аналогия с доказательством $M(12t+6) \le 5$. Далее будут использоваться обозначения из лемм 6 и 7 отсюда. Случай $3 \mid n_8$ рассматривается также. Пусть $3 \mid n_6$. Здесь возможны два случая. Либо $9 \mid n_0$, либо $9 \mid n_6$. В первом случае получаем $n_6 = 6y^2$. Тогда $4x^2-3y^2 = 1$ --- получили уравнение Пелля. Как минимум, это уже говорит о том, что решения в этом случае, если они существуют, очень редки и искать их нет смысла. Но есть ещё второй случай $9 \mid n_6$. В этом случае $n_0 = 3pz^2$ и $n_6 = 2qy^2$ для некоторых простых $p, q$. Пользуясь этим, можно получить некоторые ограничения на $n_8 = 8x^2$.

-- 11.07.2022, 15:22 --

mathematician123 в сообщении #1559922 писал(а):
Здесь возможны два случая. Либо $9 \mid n_0$, либо $9 \mid n_6$.

Забыл написать. Есть ещё случай $9 \mid n_3$. Тогда $n_6 = 6y^2$, $n_8 = 8x^2$, $n_0 = 3pz^2$. И здесь можно применить метод из доказательства $M(12t+6) \le 5$ и свести этот случай к набору уравнений Туэ.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 21:30 
VAL в сообщении #1559918 писал(а):
А паттерн попытаюсь сделать и пробный подсчет тоже. Возможно, что-то прояснится.
Фу-у-х!
Соорудил.
Похоже, $M(60)\le 17$
Цепочка из 17 чисел должна начинаться с $n_7$, где $n_i \equiv i \pmod{32}$.
У меня нет строгого доказательства, но, похоже $n_6$ (а возможно, и $n_4$) не могут иметь 60 делителей, если их 60 у $n_8$.

Что касается практических шансов, тут все как я предсказывал. Примерно на $10^{27}$ цепочек найдется одна подходящая. Но это при условии, что с ростом проверяемых чисел простые среди интересующих нас не будут встречаться все реже. Что, разумеется, неверно.

Паттерн прилагаю.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.07.2022, 23:24 
mathematician123 в сообщении #1559922 писал(а):
Далее будут использоваться обозначения из лемм 6 и 7 отсюда
.

Докажем, что $M(84) \le 15$. Почти все случаи здесь рассматриваются также, как и в леммах 6 и 7. Отдельного рассмотрения требуют только случаи $n_0 = 3pq^22^6$ и $n_0 = 3^2 \cdot 2^6 pq$. Рассмотрим эти случаи. Заметим, что $n_6 = 2ry^2$ для некоторого простого $r$. Тогда $(2x-1)(2x+1) = ry^2$. Отсюда следует, что $2x \pm 1 = z^2$. По модулю 4 случай с плюсом невозможен. Тогда $2x = z^2+1$. Пусть $z = 2w+1$. Тогда $x = 2w^2+2w+1$.
Подставим это в уравнение $8(x^2-1) = n_0$ и получим $32(w)(w+1)(w^2+w+1) = n_0$. Заметим, что сомножители в скобках попарно взаимнопросты. Тогда один из них не делится ни на $p$, ни на $q$. Тогда этот сомножитель будет $\le 2^6 \cdot 3^2$.

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 92, 93, 94, 95, 96, 97, 98 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group